A cross-sectional study on metoprolol concentrations in various biological samples and their inter-correlations.

Autor: Houshyar J; Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Department of Internal Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran., Hashemzadeh N; Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran., Khoubnasabjafari M; Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran., Sarmadian AJ; Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran., Jouyban-Gharamaleki V; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz, Iran., Mogaddam MRA; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran., Khosrowshahi EM; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran., Jouyban A; Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. ajouyban@hotmail.com.
Jazyk: angličtina
Zdroj: BMC pharmacology & toxicology [BMC Pharmacol Toxicol] 2024 Aug 08; Vol. 25 (1), pp. 45. Date of Electronic Publication: 2024 Aug 08.
DOI: 10.1186/s40360-024-00773-3
Abstrakt: Background: Concentrations of metoprolol in exhaled breath condensate (EBC) have not been investigated. Herein, we aim to determine the metoprolol levels in EBC, plasma, and urine samples.
Methods: Biological samples were collected from 39 patients receiving metoprolol. Metoprolol was determined using liquid chromatography mass spectrometery. The obtained metoprolol levels in biological fluids were investigated for possible inter-correlations.
Results: Acceptable linearity was obtained with coefficient of determinations equal to 0.9998, 0.9941, and 0.9963 for EBC, plasma, and urine samples, respectively. The calibration curves were linear in the ranges of 0.6-500, 0.4-500, and 0.7-10,000 µg·L - 1 regarding EBC, plasma, and urine samples, respectively. The detection and quantification limits were (0.18, 0.12, and 0.21 µg·L - 1 ) and (0.60, 0.40, and 0.70 µg·L - 1 ) for EBC, plasma, and urine samples, respectively. The relative standard deviations for the intra- and inter-day replications were obtained between 5.2 and 6.1 and 3.3-4.6%, respectively. The obtained mean metoprolol levels in EBC, plasma, and urine samples of 39 patients were 5.35, 70.76, and 1943.1 µg·L - 1 . There were correlations between daily dose and plasma and urinary concentrations of metoprolol in the investigated samples, whereas no significant correlation was observed for daily dose and EBC levels. The correlation among plasma-urine levels was significant, however, the non-significant correlation was obtained between plasma and EBC concentrations.
Conclusion: Metoprolol levels varied widely due to the metabolic pattern of the Azeri population, different dosages received by the patients, formulation effects, age, sex, and interactions with the co-administered drugs. A poor correlation of EBC-plasma concentrations and a significant correlation of plasma-urine concentrations were observed. Further investigations are required to provide the updated services to personalized medicine departments.
(© 2024. The Author(s).)
Databáze: MEDLINE