Regulation of seawater dissolved carbon pools by environmental changes in Ulva prolifera originating sites: A new perspective on the contribution of U. prolifera to the seawater carbon sink function.

Autor: Li BH; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China., Gong JC; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China., Li CX; First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China., Liu T; College for Ocean and Earth Science, Xiamen University, Xiamen, 361102, China., Hu JW; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China., Li PF; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China., Liu CY; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China. Electronic address: roseliu@ouc.edu.cn., Yang GP; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China. Electronic address: gpyang@mail.ouc.edu.cn.
Jazyk: angličtina
Zdroj: Environmental pollution (Barking, Essex : 1987) [Environ Pollut] 2024 Nov 01; Vol. 360, pp. 124679. Date of Electronic Publication: 2024 Aug 06.
DOI: 10.1016/j.envpol.2024.124679
Abstrakt: The Ulva prolifera bloom is considered one of the most serious ecological disasters in the Yellow Sea in the past decade, forming a carbon sink in its source area within a short period but becoming a carbon source at its destination. To explore the effects of different environmental changes on seawater dissolved carbon pools faced by living U. prolifera in its originating area, U. prolifera were cultured in three sets with different light intensity (54, 108, and 162 μmol m -2  s -1 ), temperature (12, 20, and 28 °C) and nitrate concentration gradients (25, 50, and 100 μmol L -1 ). The results showed that moderate light (108 μmol m -2  s -1 ), temperature (20 °C), and continuous addition of exogenous nitrate significantly enhanced the absorption of dissolved inorganic carbon (DIC) in seawater by U. prolifera and most promoted its growth. Under the most suitable environment, the changes in the seawater carbonate system were mainly dominated by biological production and denitrification, with less influence from aerobic respiration. Facing different environmental changes, U. prolifera continuously changed its carbon fixation mode according to tissue δ 13 C results, with the changes in the concentrations of various components of DIC in seawater, especially the fluctuation of HCO 3 - and CO 2 concentrations. Enhanced light intensity of 108 μmol m -2  s -1 could shift the carbon fixation pathway of U. prolifera towards the C 4 pathway compared to temperature and nitrate stimulation. Environmental conditions at the origin determined the amount of dissolved carbon fixed by U. prolifera. Therefore, more attention should be paid to the changes in marine environmental conditions at the origin of U. prolifera, providing a basis for scientific management of U. prolifera.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 Elsevier Ltd. All rights reserved.)
Databáze: MEDLINE