Electrochemical sensing technology based on a ligation-initiated LAMP-assisted CRISPR/Cas12a system for high-specificity detection of EGFR E746-A750 deletion mutation.
Autor: | Chen C; Clinical Laboratory, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, PR China., Chen S; School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China., Fu Y; School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China., Wei Y; School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China., Xie L; School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China., Chen M; Clinical Laboratory, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, PR China. Electronic address: 396762073@qq.com. |
---|---|
Jazyk: | angličtina |
Zdroj: | Biosensors & bioelectronics [Biosens Bioelectron] 2024 Nov 01; Vol. 263, pp. 116635. Date of Electronic Publication: 2024 Aug 05. |
DOI: | 10.1016/j.bios.2024.116635 |
Abstrakt: | Epidermal growth factor receptor (EGFR) mutation status is pivotal in predicting the efficacy of tyrosine kinase inhibitor treatments against tumors. Among EGFR mutations, the E746-A750 deletion is particularly common and accurately quantifying it can guide targeted therapies. This study introduces a novel visual sensing technology using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system guided by ligation-initiated loop-mediated isothermal amplification (LAMP) to detect the del E746-A750 mutation in EGFR. Conventional LAMP primers were simplified by designing a pair of target-specific stem-loop DNA probes, enabling selective amplification of the target DNA. The CRISPR/Cas12a system was employed to identify the target nucleic acid and activate Cas12a trans-cleavage activity, thereby enhancing the specificity of the assay. Furthermore, the biosensor utilized high-performance nanomaterials such as triangular gold nanoparticles and graphdiyne, known for their large specific surface area, to enhance sensitivity effectively as a sensing platform. The proposed biosensor demonstrated outstanding specificity, achieving a low detection limit of 17 fM (S/N = 3). Consequently, this innovative strategy not only expands the application scope of CRISPR/Cas12a technology but also introduces a promising approach for clinical diagnostics in modern medicine. Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2024 Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |