Endothelial TRPV4 channel mediates the vasodilation induced by Tanshinone IIA.
Autor: | Wang P; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210029, China., Gu Y; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210029, China., Lu J; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210029, China., Song M; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China., Hou W; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China., Li P; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China., Sun Y; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China., Wang J; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China. Electronic address: juejinwang@njmu.edu.cn., Chen X; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China. Electronic address: yfy0007@njucm.edu.cn. |
---|---|
Jazyk: | angličtina |
Zdroj: | Chemico-biological interactions [Chem Biol Interact] 2024 Oct 01; Vol. 402, pp. 111181. Date of Electronic Publication: 2024 Jul 31. |
DOI: | 10.1016/j.cbi.2024.111181 |
Abstrakt: | Tanshinone IIA (TSA), the main lipo-soluble component from the dried rhizome of Salvia miltiorrhiza, has been shown to induce vasodilation. However, the underlying mechanisms remains unclear. This study aimed to investigate the effect of TSA on the vasodilation of small resistant arteries ex vivo. Vascular myography revealed that endothelial denudation reduced significantly the vasodilatory effect of TSA. Blocking transient receptor potential vanilloid 4 (TRPV4) channels prevented TSA-induced vasodilation. Whole-cell patch-clamp analysis revealed that the current passing through TRPV4 channels increased after TSA treatment in endothelial cells (ECs). This was attributed to reduced TRPV4 protein degradation along with its increased expression. The TRPV4 inhibitor HC-067047 lowed nitric oxide (NO) production and TSA-induced expression of endothelial nitric oxide synthase (eNOS). Moreover, it increased the production of cyclic guanosine monophosphate (cGMP) and protein kinase G (PKG). The present results indicate that TSA induces endothelium-dependent vasodilation, which is mediated by the TRPV4-NO-PKG signaling pathway. These findings highlight the potential of TSA, a compound known in traditional Chinese medicine as Danshen (Salvia miltiorrhiza), for future cardiovascular therapeutic strategies. Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2024 Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |