Using contact network dynamics to implement efficient interventions against pathogen spread in hospital settings: A modelling study.
Autor: | Leclerc QJ; Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Bacterial Escape to Antimicrobials (EMEA), Paris, France.; INSERM, Université Paris-Saclay, Université de Versailles St-Quentin-en-Yvelines, Team Echappement aux Anti-infectieux et Pharmacoépidémiologie U1018, CESP, Versailles, France.; Laboratoire Modélisation, Epidémiologie et Surveillance des Risques Sanitaires, Conservatoire National des Arts et Métiers, Paris, France., Duval A; Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Bacterial Escape to Antimicrobials (EMEA), Paris, France.; INSERM, Université Paris-Saclay, Université de Versailles St-Quentin-en-Yvelines, Team Echappement aux Anti-infectieux et Pharmacoépidémiologie U1018, CESP, Versailles, France.; Laboratoire Modélisation, Epidémiologie et Surveillance des Risques Sanitaires, Conservatoire National des Arts et Métiers, Paris, France., Guillemot D; Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Bacterial Escape to Antimicrobials (EMEA), Paris, France.; INSERM, Université Paris-Saclay, Université de Versailles St-Quentin-en-Yvelines, Team Echappement aux Anti-infectieux et Pharmacoépidémiologie U1018, CESP, Versailles, France.; AP-HP, Paris Saclay, Department of Public Health, Medical Information, Clinical Research, Garches, France., Opatowski L; Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Bacterial Escape to Antimicrobials (EMEA), Paris, France.; INSERM, Université Paris-Saclay, Université de Versailles St-Quentin-en-Yvelines, Team Echappement aux Anti-infectieux et Pharmacoépidémiologie U1018, CESP, Versailles, France., Temime L; Laboratoire Modélisation, Epidémiologie et Surveillance des Risques Sanitaires, Conservatoire National des Arts et Métiers, Paris, France.; Institut Pasteur, Conservatoire National des Arts et Métiers, Unité PACRI, Paris, France. |
---|---|
Jazyk: | angličtina |
Zdroj: | PLoS medicine [PLoS Med] 2024 Jul 30; Vol. 21 (7), pp. e1004433. Date of Electronic Publication: 2024 Jul 30 (Print Publication: 2024). |
DOI: | 10.1371/journal.pmed.1004433 |
Abstrakt: | Background: Long-term care facilities (LTCFs) are hotspots for pathogen transmission. Infection control interventions are essential, but the high density and heterogeneity of interindividual contacts within LTCF may hinder their efficacy. Here, we explore how the patient-staff contact structure may inform effective intervention implementation. Methods and Findings: Using an individual-based model (IBM), we reproduced methicillin-resistant Staphylococcus aureus colonisation transmission dynamics over a detailed contact network recorded within a French LTCF of 327 patients and 263 staff over 3 months. Simulated baseline cumulative colonisation incidence was 21 patients (prediction interval: 11, 31) and 35 staff (prediction interval: 19, 54). We examined the potential impact of 3 types of interventions against transmission (reallocation reducing the number of unique contacts per staff, reinforced contact precautions, and hypothetical vaccination protecting against acquisition), targeted towards specific populations. All 3 interventions were effective when applied to all nurses or healthcare assistants (median reduction in MRSA colonisation incidence up to 35%), but the benefit did not exceed 8% when targeting any other single staff category. We identified "supercontactor" individuals with most contacts ("frequency-based," overrepresented among nurses, porters, and rehabilitation staff) or with the longest cumulative time spent in contact ("duration-based," overrepresented among healthcare assistants and patients in elderly care or persistent vegetative state (PVS)). Targeting supercontactors enhanced interventions against pathogen spread in the LTCF. With contact precautions, targeting frequency-based staff supercontactors led to the highest incidence reduction (20%, 95% CI: 19, 21). Vaccinating a mix of frequency- and duration-based staff supercontactors led to a higher reduction (23%, 95% CI: 22, 24) than all other approaches. Although based on data from a single LTCF, when varying epidemiological parameters to extend to other pathogens, our results suggest that targeting supercontactors is always the most effective strategy, indicating this approach could be applied to prevent transmission of other nosocomial pathogens. Conclusions: By characterising the contact structure in hospital settings and identifying the categories of staff and patients more likely to be supercontactors, with either more or longer contacts than others, interventions against nosocomial spread could be more effective. We find that the most efficient implementation strategy depends on the intervention (reallocation, contact precautions, vaccination) and target population (staff, patients, supercontactors). Importantly, both staff and patients may be supercontactors, highlighting the importance of including patients in measures to prevent pathogen transmission in LTCF. Competing Interests: LO reports grants from Pfizer outside the submitted work. The authors have declared that no other competing interests exist. (Copyright: © 2024 Leclerc et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |