A Predictive Model of the Start of Annual Influenza Epidemics.

Autor: Castro Blanco E; Primary Care Intervention Evaluation Research Group (GAVINA Research Group), IDIAPJGol Terres de l'Ebre, 43500 Tortosa, Spain.; Campus Terres de l'Ebre, Universitat Rovira i Virgili, 43500 Tortosa, Spain.; Terres de l'Ebre Research Support Unit, Foundation University Institute for Primary Health Care Research Jordi Gol i Gurina (IDIAPJGol), 43500 Tortosa, Spain., Dalmau Llorca MR; Primary Care Intervention Evaluation Research Group (GAVINA Research Group), IDIAPJGol Terres de l'Ebre, 43500 Tortosa, Spain.; Campus Terres de l'Ebre, Universitat Rovira i Virgili, 43500 Tortosa, Spain.; Servei d'Atenció Primària Terres de l'Ebre, Institut Català de la Salut, 43500 Tortosa, Spain., Aguilar Martín C; Primary Care Intervention Evaluation Research Group (GAVINA Research Group), IDIAPJGol Terres de l'Ebre, 43500 Tortosa, Spain.; Terres de l'Ebre Research Support Unit, Foundation University Institute for Primary Health Care Research Jordi Gol i Gurina (IDIAPJGol), 43500 Tortosa, Spain.; Unitat d'Avaluació, Direcció d'Atenció Primària Terres de l'Ebre, Institut Català de la Salut, 43500 Tortosa, Spain., Carrasco-Querol N; Primary Care Intervention Evaluation Research Group (GAVINA Research Group), IDIAPJGol Terres de l'Ebre, 43500 Tortosa, Spain.; Terres de l'Ebre Research Support Unit, Foundation University Institute for Primary Health Care Research Jordi Gol i Gurina (IDIAPJGol), 43500 Tortosa, Spain., Gonçalves AQ; Primary Care Intervention Evaluation Research Group (GAVINA Research Group), IDIAPJGol Terres de l'Ebre, 43500 Tortosa, Spain.; Terres de l'Ebre Research Support Unit, Foundation University Institute for Primary Health Care Research Jordi Gol i Gurina (IDIAPJGol), 43500 Tortosa, Spain., Hernández Rojas Z; Primary Care Intervention Evaluation Research Group (GAVINA Research Group), IDIAPJGol Terres de l'Ebre, 43500 Tortosa, Spain.; Servei d'Atenció Primària Terres de l'Ebre, Institut Català de la Salut, 43500 Tortosa, Spain., Coma E; Primary Healthcare Information Systems, Health Institute of Catalonia, 08007 Catalonia, Spain., Fernández-Sáez J; Primary Care Intervention Evaluation Research Group (GAVINA Research Group), IDIAPJGol Terres de l'Ebre, 43500 Tortosa, Spain.; Terres de l'Ebre Research Support Unit, Foundation University Institute for Primary Health Care Research Jordi Gol i Gurina (IDIAPJGol), 43500 Tortosa, Spain.; Servei d'Atenció Primària Terres de l'Ebre, Institut Català de la Salut, 43500 Tortosa, Spain.; Unitat de Recerca, Gerència Territorial Terres de l'Ebre, Institut Català de la Salut, 43500 Tortosa, Spain.; Unitat Docent de Medicina de Familia i Comunitària, Tortosa-Terres de l'Ebre, Institut Català de la Salut, 43500 Tortosa, Spain.
Jazyk: angličtina
Zdroj: Microorganisms [Microorganisms] 2024 Jun 21; Vol. 12 (7). Date of Electronic Publication: 2024 Jun 21.
DOI: 10.3390/microorganisms12071257
Abstrakt: Influenza is a respiratory disease that causes annual epidemics during cold seasons. These epidemics increase pressure on healthcare systems, sometimes provoking their collapse. For this reason, a tool is needed to predict when an influenza epidemic will occur so that the healthcare system has time to prepare for it. This study therefore aims to develop a statistical model capable of predicting the onset of influenza epidemics in Catalonia, Spain. Influenza seasons from 2011 to 2017 were used for model training, and those from 2017 to 2018 were used for validation. Logistic regression, Support Vector Machine, and Random Forest models were used to predict the onset of the influenza epidemic. The logistic regression model was able to predict the start of influenza epidemics at least one week in advance, based on clinical diagnosis rates of various respiratory diseases and meteorological variables. This model achieved the best punctual estimates for two of three performance metrics. The most important variables in the model were the principal components of bronchiolitis rates and mean temperature. The onset of influenza epidemics can be predicted from clinical diagnosis rates of various respiratory diseases and meteorological variables. Future research should determine whether predictive models play a key role in preventing influenza.
Databáze: MEDLINE