Graphene Oxide Nanosheets for Bone Tissue Regeneration.

Autor: Castro JI; Tribology, Polymers, Powder Metallurgy and Solid Waste Transformations Research Group, Universidad del Valle, Calle 13 No. 100-00, Cali 760001, Colombia., Payan-Valero A; Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B Número 36-00, Cali 760001, Colombia., Valencia-Llano CH; Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B Número 36-00, Cali 760001, Colombia., Valencia Zapata ME; Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 Número 100-00, Cali 760032, Colombia., Mina Hernández JH; Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 Número 100-00, Cali 760032, Colombia., Zapata PA; Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago de Chile 9170020, Chile., Grande-Tovar CD; Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia.
Jazyk: angličtina
Zdroj: Molecules (Basel, Switzerland) [Molecules] 2024 Jul 10; Vol. 29 (14). Date of Electronic Publication: 2024 Jul 10.
DOI: 10.3390/molecules29143263
Abstrakt: Bone tissue engineering is a promising alternative to repair wounds caused by cellular or physical accidents that humans face daily. In this sense, the search for new graphene oxide (GO) nanofillers related to their degree of oxidation is born as an alternative bioactive component in forming new scaffolds. In the present study, three different GOs were synthesized with varying degrees of oxidation and studied chemically and tissue-wise. The oxidation degree was determined through infrared (FTIR), X-ray diffraction (XRD), X-ray photoelectron (XPS), and Raman spectroscopy (RS). The morphology of the samples was analyzed using scanning electron microscopy (SEM). The oxygen content was deeply described using the deconvolution of RS and XPS techniques. The latter represents the oxidation degree for each of the samples and the formation of new bonds promoted by the graphitization of the material. In the RS, two characteristic bands were observed according to the degree of oxidation and the degree of graphitization of the material represented in bands D and G with different relative intensities, suggesting that the samples have different crystallite sizes. This size was described using the Tuinstra-Koenig model, ranging between 18.7 and 25.1 nm. Finally, the bone neoformation observed in the cranial defects of critical size indicates that the F1 and F2 samples, besides being compatible and resorbable, acted as a bridge for bone healing through regeneration. This promoted healing by restoring bone and tissue structure without triggering a strong immune response.
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje