Non-equilibrium transport in polymer mixed ionic-electronic conductors at ultrahigh charge densities.

Autor: Tjhe DHL; Cavendish Laboratory, University of Cambridge, Cambridge, UK., Ren X; Cavendish Laboratory, University of Cambridge, Cambridge, UK. xr216@cam.ac.uk., Jacobs IE; Cavendish Laboratory, University of Cambridge, Cambridge, UK. ij255@cam.ac.uk., D'Avino G; Grenoble Alpes University, CNRS, Grenoble INP, Institut Néel, Grenoble, France. gabriele.davino@neel.cnrs.fr., Mustafa TBE; Cavendish Laboratory, University of Cambridge, Cambridge, UK.; Department of Chemistry, University of Cambridge, Cambridge, UK., Marsh TG; Cavendish Laboratory, University of Cambridge, Cambridge, UK., Zhang L; Cavendish Laboratory, University of Cambridge, Cambridge, UK., Fu Y; Department of Chemistry, University of Cambridge, Cambridge, UK., Mansour AE; Institut für Physik and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.; Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany., Opitz A; Institut für Physik and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.; Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany., Huang Y; Cavendish Laboratory, University of Cambridge, Cambridge, UK., Zhu W; Cavendish Laboratory, University of Cambridge, Cambridge, UK., Unal AH; Cavendish Laboratory, University of Cambridge, Cambridge, UK., Hoek S; Cavendish Laboratory, University of Cambridge, Cambridge, UK., Lemaur V; Laboratory for Chemistry of Novel Materials, University of Mons, Mons, Belgium., Quarti C; Laboratory for Chemistry of Novel Materials, University of Mons, Mons, Belgium., He Q; Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, UK., Lee JK; Department of Polymer Science and Engineering, Inha University, Incheon, South Korea., McCulloch I; Department of Chemistry, University of Oxford, Oxford, UK., Heeney M; Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, UK., Koch N; Institut für Physik and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.; Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany., Grey CP; Department of Chemistry, University of Cambridge, Cambridge, UK., Beljonne D; Laboratory for Chemistry of Novel Materials, University of Mons, Mons, Belgium., Fratini S; Grenoble Alpes University, CNRS, Grenoble INP, Institut Néel, Grenoble, France., Sirringhaus H; Cavendish Laboratory, University of Cambridge, Cambridge, UK. hs220@cam.ac.uk.
Jazyk: angličtina
Zdroj: Nature materials [Nat Mater] 2024 Jul 26. Date of Electronic Publication: 2024 Jul 26.
DOI: 10.1038/s41563-024-01953-6
Abstrakt: Conducting polymers are mixed ionic-electronic conductors that are emerging candidates for neuromorphic computing, bioelectronics and thermoelectrics. However, fundamental aspects of their many-body correlated electron-ion transport physics remain poorly understood. Here we show that in p-type organic electrochemical transistors it is possible to remove all of the electrons from the valence band and even access deeper bands without degradation. By adding a second, field-effect gate electrode, additional electrons or holes can be injected at set doping states. Under conditions where the counterions are unable to equilibrate in response to field-induced changes in the electronic carrier density, we observe surprising, non-equilibrium transport signatures that provide unique insights into the interaction-driven formation of a frozen, soft Coulomb gap in the density of states. Our work identifies new strategies for substantially enhancing the transport properties of conducting polymers by exploiting non-equilibrium states in the coupled system of electronic charges and counterions.
(© 2024. The Author(s).)
Databáze: MEDLINE