The metabolism of 5'-methylthioadenosine and 5-methylthioribose 1-phosphate in Saccharomyces cerevisiae.

Autor: Marchitto KS, Ferro AJ
Jazyk: angličtina
Zdroj: Journal of general microbiology [J Gen Microbiol] 1985 Sep; Vol. 131 (9), pp. 2153-64.
DOI: 10.1099/00221287-131-9-2153
Abstrakt: Cordycepin sensitive mutants of Saccharomyces cerevisiae, which are permeable to 5'-deoxy-5'-methylthioadenosine (MTA), were used to study the fate of the methylthioribose carbons of this purine nucleoside. Evidence is presented for the recycling of the methylthio group and part of the ribose portion of MTA in a biosynthetic pathway which leads to the synthesis of methionine. The main pathway involves the phosphorylytic cleavage of MTA by MTA phosphorylase yielding 5-methylthioribose 1-phosphate and adenine as products. Loss of the phosphate group of 5-methylthioribose 1-phosphate, concurrent with the rearrangement of the ribose carbons, leads to the synthesis of 2-keto-4-methylthiobutyric acid. In the final step of the sequence, 2-keto-4-methylthiobutyric acid is converted to methionine via transamination. Several compounds not directly associated with the biosynthesis of methionine were also isolated. These compounds, which may arise through the degradation of intermediates in the pathway, were: 5'-methylthioinosine, a deaminated catabolite of MTA; 5-methylthioribose, a result of the phosphorylysis of 5-methylthioribose 1-phosphate, and 3-methylthiopropionaldehyde, 3-methylthiopropionic acid and 2-hydroxy-4-methylthiobutyric acid, all arising from the catabolism of 2-keto-4-methylthiobutyric acid.
Databáze: MEDLINE