Water-Soluble Alumina-Coated Indium Phosphide Core-Shell Quantum Dots with Efficient Deep-Red Emission Beyond 700 nm.

Autor: Saha A; University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, 38000, France., Yadav R; University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, 38000, France., Rivaux C; University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, 38000, France., Aldakov D; University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, 38000, France., Reiss P; University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, 38000, France.
Jazyk: angličtina
Zdroj: Small (Weinheim an der Bergstrasse, Germany) [Small] 2024 Nov; Vol. 20 (45), pp. e2404426. Date of Electronic Publication: 2024 Jul 26.
DOI: 10.1002/smll.202404426
Abstrakt: Solution-processed colloidal III-V semiconductor-based quantum dots (QDs) represent promising and environmentally-friendly alternatives to Cd-based QDs in the realms of optoelectronics and biological applications. While InP-based core-shell QDs have demonstrated efficient light-emitting diode (LED) performance in the visible region, achieving deep-red emission (above 700 nm) with a narrow linewidth has proven challenging. Herein, the study presents a novel strategy for synthesizing InP/ZnSe/ZnS core-shell-shell QDs tailored for emission in the first biological transparency window. The resulting QDs exhibit an emission wavelength up to 725 nm with a narrow peak full width at half maximum (FWHM) down to 107 meV (45 nm). To enhance the biocompatibility and chemical stability of the QDs, their surface is further capped with a layer of amorphous alumina resulting in an InP/ZnSe/ZnS/Al 2 O 3 heterostructure. This surface passivation not only ensures environmental- and photostability but also enhances the photoluminescence quantum yield (PLQY). The alumina capping enables the aqueous phase transfer via surface ligand exchange using mercaptopropionic acid (MPA) while maintaining the initial quantum yield. The resulting QDs demonstrate a significant potential for advancing next-generation optoelectronic technologies and bio-applications.
(© 2024 The Author(s). Small published by Wiley‐VCH GmbH.)
Databáze: MEDLINE