Water-Soluble Alumina-Coated Indium Phosphide Core-Shell Quantum Dots with Efficient Deep-Red Emission Beyond 700 nm.
Autor: | Saha A; University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, 38000, France., Yadav R; University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, 38000, France., Rivaux C; University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, 38000, France., Aldakov D; University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, 38000, France., Reiss P; University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, 38000, France. |
---|---|
Jazyk: | angličtina |
Zdroj: | Small (Weinheim an der Bergstrasse, Germany) [Small] 2024 Nov; Vol. 20 (45), pp. e2404426. Date of Electronic Publication: 2024 Jul 26. |
DOI: | 10.1002/smll.202404426 |
Abstrakt: | Solution-processed colloidal III-V semiconductor-based quantum dots (QDs) represent promising and environmentally-friendly alternatives to Cd-based QDs in the realms of optoelectronics and biological applications. While InP-based core-shell QDs have demonstrated efficient light-emitting diode (LED) performance in the visible region, achieving deep-red emission (above 700 nm) with a narrow linewidth has proven challenging. Herein, the study presents a novel strategy for synthesizing InP/ZnSe/ZnS core-shell-shell QDs tailored for emission in the first biological transparency window. The resulting QDs exhibit an emission wavelength up to 725 nm with a narrow peak full width at half maximum (FWHM) down to 107 meV (45 nm). To enhance the biocompatibility and chemical stability of the QDs, their surface is further capped with a layer of amorphous alumina resulting in an InP/ZnSe/ZnS/Al (© 2024 The Author(s). Small published by Wiley‐VCH GmbH.) |
Databáze: | MEDLINE |
Externí odkaz: |