Spatial Resolution for X-ray Excited Luminescence Chemical Imaging (XELCI).

Autor: Rajamanthrilage AC; Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States., Uzair U; Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States., Millhouse PW; Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States., Case MJ; Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States., Benza DW; Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States., Anker JN; Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States.
Jazyk: angličtina
Zdroj: Chemical & biomedical imaging [Chem Biomed Imaging] 2024 Jul 02; Vol. 2 (7), pp. 510-517. Date of Electronic Publication: 2024 Jul 02 (Print Publication: 2024).
DOI: 10.1021/cbmi.4c00039
Abstrakt: Measuring chemical concentrations at the surface of implanted medical devices is important for elucidating the local biochemical environment, especially during implant infection. Although chemical indicator dyes enable chemical measurements in vitro, they are usually ineffective when measuring through tissue because the background obscures the dye signal and scattering dramatically reduces the spatial resolution. X-ray excited luminescent chemical imaging (XELCI) is a recent imaging modality which overcomes these limitations using a focused X-ray beam to excite a small spot of red light on scintillator-coated medical implants with well-defined location (because X-rays are minimally scattered) and low background. A spectrochemical indicator film placed over the scintillator layer, e.g., a polymer film containing pH-indicator dyes, absorbs some of the luminescence according to the local chemical environment, and this absorption is then detected by measuring the light intensity/spectrum passing through the tissue. A focused X-ray beam is used to scan point-by-point with a spatial resolution mainly limited by the X-ray beam width with minimum increase from X-ray absorption and scattering in the tissue. X-ray resolution, implant surface specificity, and chemical sensitivity are the three key features of XELCI. Here, we study spatial resolution using optically absorptive targets. For imaging a series of lines, the 20-80% knife-edge resolution was ∼285 (±15) μm with no tissue and 475 ± 18 and 520 ± 34 μm, respectively, through 5 and 10 mm thick tissue. Thus, doubling the tissue depth did not appreciably change the spatial resolution recorded through the tissue. This shows the promise of XELCI for submillimeter chemical imaging through tissue.
Competing Interests: The authors declare no competing financial interest.
(© 2024 The Authors. Co-published by Nanjing University and American Chemical Society.)
Databáze: MEDLINE