Lactoferrin, chitosan double-coated oleosomes loaded with clobetasol propionate for remyelination in multiple sclerosis: Physicochemical characterization and in-vivo assessment in a cuprizone-induced demyelination model.
Autor: | Abdelalim LR; Department of Pharmaceutics and pharmaceutical technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt., Elnaggar YSR; Department of Pharmaceutics and pharmaceutical technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt. Electronic address: yosra.s.elnaggar@gmail.com., Abdallah OY; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt. |
---|---|
Jazyk: | angličtina |
Zdroj: | International journal of biological macromolecules [Int J Biol Macromol] 2024 Oct; Vol. 277 (Pt 1), pp. 134144. Date of Electronic Publication: 2024 Jul 23. |
DOI: | 10.1016/j.ijbiomac.2024.134144 |
Abstrakt: | Multiple sclerosis is a chronic inflammatory demyelinating disorder of the CNS characterized by continuous myelin damage accompanied by deterioration in functions. Clobetasol propionate (CP) is the most potent topical corticosteroid with serious side effects related to systemic absorption. Previous studies introduced CP for remyelination without considering systemic toxicity. This work aimed at fabrication and optimization of double coated nano-oleosomes loaded with CP to achieve brain targeting through intranasal administration. The optimized formulation was coated with lactoferrin and chitosan for the first time. The obtained double-coated oleosomes had particle size (220.07 ± 0.77 nm), zeta potential (+30.23 ± 0.41 mV) along with antioxidant capacity 9.8 μM ascorbic acid equivalents. Double coating was well visualized by TEM and significantly decreased drug release. Three different doses of CP were assessed in-vivo using cuprizone-induced demyelination in C57Bl/6 mice. Neurobehavioral tests revealed improvement in motor and cognitive functions of mice in a dose-dependent manner. Histopathological examination of the brain showed about 2.3 folds increase in corpus callosum thickness in 0.3 mg/kg CP dose. Moreover, the measured biomarkers highlighted the significant antioxidant and anti-inflammatory capacity of the formulation. In conclusion, the elaborated biopolymer-integrating nanocarrier succeeded in remyelination with 6.6 folds reduction in CP dose compared to previous studies. Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2024 Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |