Citrus oil gland and cuticular wax inspired multifunctional gelatin film of OSA-starch nanoparticles-based nanoemulsions for preserving perishable fruit.

Autor: Xie Y; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China., Ding K; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China., Xu S; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China., Xu H; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China., Ge S; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China., Chang X; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China., Li H; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China., Wang Z; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China., Luo Z; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310000, China., Shan Y; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China., Ding S; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China. Electronic address: shhding@hotmail.com.
Jazyk: angličtina
Zdroj: Carbohydrate polymers [Carbohydr Polym] 2024 Oct 15; Vol. 342, pp. 122352. Date of Electronic Publication: 2024 Jun 04.
DOI: 10.1016/j.carbpol.2024.122352
Abstrakt: Inspired by the citrus oil gland and cuticular wax, a multifunctional material that stably and continuously released the carvacrol and provided physical defenses was developed to address issues of fresh-cut fruits to microbial infestation and moisture loss. The results confirmed that low molecular weight and loose structure of starch nanoparticles prepared by the ultrasound-assisted Fenton system were preferable for octenyl succinic anhydride modification compared to native starch, achieving a higher degree of substitution (increased by 18.59 %), utilizing in preparing nanoemulsions (NEs) for encapsulating carvacrol (at 5 % level: 81.58 %). Furthermore, the NEs-based gelatin (G) film improved with surface hydrophobic modification by myristic acid (MA) successfully replicated the citrus oil gland and cuticular wax, providing superior antioxidant (enhanced by 3-4 times) and antimicrobial properties (95.99 % and 84.97 % against Staphylococcus aureus and Escherichia coli respectively), as well as the exceptional UV shielding (nearly 0 transmittance in the UV region), mechanical (72 % increase in tensile strength), and hydrophobic (WCA 133.63°). Moreover, the 5%NE-G@MA film inhibited foodborne microbial growth (reduced by 50 %) and water loss (controlled below 15 %), extending the shelf life of fresh-cut navel orange and kiwi. Thus, the multifunctional film was a potential shield for preserving perishable fresh-cut products.
Competing Interests: Declaration of competing interest The authors have no conflicts of interest.
(Copyright © 2024 Elsevier Ltd. All rights reserved.)
Databáze: MEDLINE