Polybrominated diphenyl ethers and their alternatives in soil cores from a typical flame-retardant production park: Vertical distribution and potential influencing factors.
Autor: | Bai C; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China., Ge X; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China., Huang Z; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China., Qi Z; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China., Ren H; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China., Yu Y; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China. Electronic address: yuyingxin@gdut.edu.cn., An T; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China. |
---|---|
Jazyk: | angličtina |
Zdroj: | Environmental pollution (Barking, Essex : 1987) [Environ Pollut] 2024 Oct 15; Vol. 359, pp. 124597. Date of Electronic Publication: 2024 Jul 22. |
DOI: | 10.1016/j.envpol.2024.124597 |
Abstrakt: | With the prohibition on the production and use of polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE) and organophosphate flame retardants (OPFRs) have emerged as their alternatives. However, the vertical transport and associated influencing factors of these chemicals into soil are not clearly understood. To clarify the vertical distribution of the pollutants and related influencing factors, surface soil and soil core samples were collected at a depth in the range of 0.10-5.00 m in a typical 20-year-old flame-retardant production park and surrounding area. PBDEs and DBDPE show a clear point source distribution around the production park with their central concentrations up to 2.88 × 10 4 and 8.46 × 10 4 ng/g, respectively. OPFRs are mainly found in residential areas. The production conversion of PBDEs to DBDPE has obvious environmental characteristics. The vertical distribution revealed that most of the pollutants have penetrated into the soil 5.00 m or even deeper. The median concentrations of deca-BDE and DBDPE reached 50.9 and 9.85 × 10 3 ng/g, respectively, even at a depth of 5.00 m. Soil organic matter plays a crucial role in determining the vertical distribution, while soil clay particles have a greater impact on the high molecular weight and/or highly brominated compounds. Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2024 Elsevier Ltd. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |