Autor: |
Li J; Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, School of Materials and Chemistry, Anhui Agricultural University, China. zbli@ahau.edu.cn., Zheng W; Biotechnology Center of Anhui Agricultural University, Anhui Agricultural University, Hefei, 230009, China., Gao Y; Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, School of Materials and Chemistry, Anhui Agricultural University, China. zbli@ahau.edu.cn., Liu X; Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, School of Materials and Chemistry, Anhui Agricultural University, China. zbli@ahau.edu.cn., Li Z; Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, School of Materials and Chemistry, Anhui Agricultural University, China. zbli@ahau.edu.cn., Zhang L; Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, School of Materials and Chemistry, Anhui Agricultural University, China. zbli@ahau.edu.cn. |
Abstrakt: |
Saxitoxin (STX) is a cyanotoxin with high toxicity, and therefore, there is an urgent need to develop a facile detection method for STX. In this study, an ordered nanopillar array-based electrochemical aptasensor was fabricated for the high-performance detection of STX. The anti-STX aptamer with methylene blue (MB) incorporated at the 3'-end (MB-Apt) was immobilized at the surface of an Au@PAN nanopillar array electrode and used as the recognition element. The proposed aptasensor demonstrated highly sensitive and selective STX detection because of synergistic catalysis effects of MB and ordered nanopillar arrays along with the selection of MB-Apt. The nanopillar array-based electrochemical aptasensor exhibited high sensitivity over a wide linear concentration range of 1 pM-3 nM with a linear regression equation of Δ I (μA) = 28.0 + 6.9 × log[STX] ( R 2 = 0.98079) and 3-100 nM with a linear regression equation of Δ I (μA) = 10.7 + 43.4 × log[STX] ( R 2 = 0.98772), where R is the correlation coefficient. In addition, the limit of detection (LOD) was as low as 1 pM. Furthermore, the designed aptasensor demonstrated excellent selectivity toward STX, preventing interference from neo-STX, okadaic acid, and common metal ions. The presented orderly nanopillar array-based strategy to develop an electrochemical aptasensor for STX detection offers a promising method for developing high-performance electrochemical sensors, and the presented aptasensor should find useful application in the detection of shellfish poison. |