Effect of ultrasound/CaCl 2 co-treatment on the microstructure, gelatinization, and film-forming properties of high amylose corn starch.

Autor: Wang J; Shandong Academy of Agricultural Sciences, Jinan 250100, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China., Liu W; Shandong Academy of Agricultural Sciences, Jinan 250100, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China., Sui J; Shandong Academy of Agricultural Sciences, Jinan 250100, China. Electronic address: suijiehao@163.com., Cui B; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China. Electronic address: cuibopaper@163.com., Yuan C; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China. Electronic address: yuanchao@qlu.edu.cn., Li Y; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China., Liu G; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China., Li Z; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
Jazyk: angličtina
Zdroj: International journal of biological macromolecules [Int J Biol Macromol] 2024 Sep; Vol. 276 (Pt 2), pp. 134067. Date of Electronic Publication: 2024 Jul 20.
DOI: 10.1016/j.ijbiomac.2024.134067
Abstrakt: The effect of ultrasound/CaCl 2 co-treatment on aggregation structure, thermal stability, rheological, and film properties of high amylose corn starch (HACS) was investigated. The scanning electron microscopy (SEM) images revealed the number of starch fragments and malformed starch granules increased after co-treatment. The differential scanning calorimetry (DSC) results showed the co-treated HACS got a lower gelatinization temperature (92.65 ± 0.495 °C) and enthalpy values (ΔH, 4.14 ± 0.192 J/g). The optical microscope images indicated that lesser Maltase crosses were observed in co-treated HACS. The results of X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) indicated ultrasound influenced the compactness of amorphous zone and CaCl 2 damaged the crystalline region of HACS granules. Additionally, the rheology properties of HACS dispersion demonstrated the apparent viscosity of co-treated dispersion increased as the ultrasound time prolonged. The mechanical strength and structural compactness of HACS films were improved after ultrasound treatment. The mechanism of ultrasound/CaCl 2 co-treatment improved the gelatinization and film-forming ability of HACS was that (i) ultrasound wave loosened the HACS granules shell, promoted the treatment of CaCl 2 on HACS granules, and (ii) ultrasound wave improved the uniform distribution of HACS dispersion, increased the interaction between CaCl 2 and starch chains during the process of film-forming.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE