Unravelling Mn 4 Ca cluster vibrations in the S 1 , S 2 and S 3 states of the Kok-Joliot cycle of photosystem II.

Autor: Capone M; Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy. matteo.capone@nano.cnr.it., Parisse G; Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy. matteo.capone@nano.cnr.it., Narzi D; Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy. matteo.capone@nano.cnr.it., Guidoni L; Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy. matteo.capone@nano.cnr.it.
Jazyk: angličtina
Zdroj: Physical chemistry chemical physics : PCCP [Phys Chem Chem Phys] 2024 Jul 31; Vol. 26 (30), pp. 20598-20609. Date of Electronic Publication: 2024 Jul 31.
DOI: 10.1039/d4cp01307g
Abstrakt: Vibrational spectroscopy serves as a powerful tool for characterizing intermediate states within the Kok-Joliot cycle. In this study, we employ a QM/MM molecular dynamics framework to calculate the room temperature infrared absorption spectra of the S 1 , S 2 , and S 3 states via the Fourier transform of the dipole time auto-correlation function. To better analyze the computational data and assign spectral peaks, we introduce an approach based on dipole-dipole correlation function of cluster moieties of the reaction center. Our analysis reveals variation in the infrared signature of the Mn 4 Ca cluster along the Kok-Joliot cycle, attributed to its increasing symmetry and rigidity resulting from the rising oxidation state of the Mn ions. Furthermore, we successfully assign the debated contributions in the frequency range around 600 cm -1 . This computational methodology provides valuable insights for deciphering experimental infrared spectra and understanding the water oxidation process in both biological and artificial systems.
Databáze: MEDLINE