Maximizing blue energy: the role of ion partitioning in nanochannel systems.

Autor: Mehta SK; Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati - 781039, India. pranabm@iitg.ac.in.; School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati - 781039, India., Deb D; Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar - 788010, India., Nandy A; Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar - 788010, India., Shen AQ; Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan., Mondal PK; Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati - 781039, India. pranabm@iitg.ac.in.; Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.; School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati - 781039, India.
Jazyk: angličtina
Zdroj: Physical chemistry chemical physics : PCCP [Phys Chem Chem Phys] 2024 Jul 31; Vol. 26 (30), pp. 20550-20561. Date of Electronic Publication: 2024 Jul 31.
DOI: 10.1039/d4cp01671h
Abstrakt: This study describes a numerical analysis on blue energy generation using a charged nanochannel with an integrated pH-sensitive polyelectrolyte layer (PEL), considering ion partitioning effects due to permittivity differences. The mathematical model for ionic and fluidic transport is solved using the finite element method, and the model validation is performed against existing theoretical and experimental results. The study investigates the influence of electrolyte concentration, permittivity ratio, and salt types (KCl, BeCl 2 , AlCl 3 ) on the energy conversion process. The findings illustrate the substantial role of ion partitioning in modulating ionic concentration and potential fields, thereby affecting current profiles and energy conversion efficiencies. Remarkably, overlooking ion partitioning leads to significant overestimations of power density, highlighting the necessity of this consideration for accurate device performance predictions. This work introduces a promising configuration that achieves higher power densities, paving the way for the next generation of efficient energy-harvesting devices. The findings offer valuable insights into the development of state-of-the-art blue energy harvesting nanofluidic devices, advancing sustainable energy production.
Databáze: MEDLINE