Bdellovibrio's prey-independent lifestyle is fueled by amino acids as a carbon source.
Autor: | Herencias C; Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria (IRYCIS), Madrid, Spain. cherodr@gmail.com.; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas-CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain. cherodr@gmail.com., Rivero-Buceta V; Polymer Biotechnology Laboratory, Biological Research Center-Margarita Salas, CSIC, Madrid, Spain.; Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain., Salgado S; Polymer Biotechnology Laboratory, Biological Research Center-Margarita Salas, CSIC, Madrid, Spain.; Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain., Hernández-Herreros N; Polymer Biotechnology Laboratory, Biological Research Center-Margarita Salas, CSIC, Madrid, Spain.; Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain., Baquero F; Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria (IRYCIS), Madrid, Spain.; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública-CIBERESP, Instituto Carlos III, Madrid, Spain., Del Campo R; Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria (IRYCIS), Madrid, Spain.; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas-CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain., Nogales J; Systems Biotechnology GroupDepartment of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain.; Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain., Prieto MA; Polymer Biotechnology Laboratory, Biological Research Center-Margarita Salas, CSIC, Madrid, Spain. auxi@cib.csic.es.; Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain. auxi@cib.csic.es. |
---|---|
Jazyk: | angličtina |
Zdroj: | Applied microbiology and biotechnology [Appl Microbiol Biotechnol] 2024 Jul 20; Vol. 108 (1), pp. 422. Date of Electronic Publication: 2024 Jul 20. |
DOI: | 10.1007/s00253-024-13250-y |
Abstrakt: | Identifying the nutritional requirements and growth conditions of microorganisms is crucial for determining their applicability in industry and understanding their role in clinical ecology. Predatory bacteria such as Bdellovibrio bacteriovorus have emerged as promising tools for combating infections by human bacterial pathogens due to their natural killing features. Bdellovibrio's lifecycle occurs inside prey cells, using the cytoplasm as a source of nutrients and energy. However, this lifecycle supposes a challenge when determining the specific uptake of metabolites from the prey to complete the growth inside cells, a process that has not been completely elucidated. Here, following a model-based approach, we illuminate the ability of B. bacteriovorus to replicate DNA, increase biomass, and generate adenosine triphosphate (ATP) in an amino acid-based rich media in the absence of prey, keeping intact its predatory capacity. In this culture, we determined the main carbon sources used and their preference, being glutamate, serine, aspartate, isoleucine, and threonine. This study offers new insights into the role of predatory bacteria in natural environments and establishes the basis for developing new Bdellovibrio applications using appropriate metabolic and physiological methodologies. KEY POINTS: • Amino acids support axenic lifestyle of Bdellovibrio bacteriovorus. • B. bacteriovorus preserves its predatory ability when growing in the absence of prey. (© 2024. The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: |