Protein-free media for cardiac differentiation of hPSCs in 2000 mL suspension culture.
Autor: | Kriedemann N; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany. Kriedemann.Nils@mh-hannover.de., Manstein F; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany.; Evotec SE, Hamburg, Germany., Hernandez-Bautista CA; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany., Ullmann K; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany., Triebert W; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany.; Evotec SE, Hamburg, Germany., Franke A; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany., Mertens M; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany., Stein ICAP; Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School (MHH), Hannover, Germany., Leffler A; Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School (MHH), Hannover, Germany., Witte M; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany., Askurava T; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany., Fricke V; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany., Gruh I; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany., Piep B; Institute of Molecular and Cell Physiology, Hannover Medical School (MHH), Hannover, Germany., Kowalski K; Institute of Molecular and Cell Physiology, Hannover Medical School (MHH), Hannover, Germany., Kraft T; Institute of Molecular and Cell Physiology, Hannover Medical School (MHH), Hannover, Germany., Zweigerdt R; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO)Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG)REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School (MHH), Carl Neuberg-Str. 1, 30625, Hannover, Germany. Zweigerdt.Robert@mh-hannover.de. |
---|---|
Jazyk: | angličtina |
Zdroj: | Stem cell research & therapy [Stem Cell Res Ther] 2024 Jul 18; Vol. 15 (1), pp. 213. Date of Electronic Publication: 2024 Jul 18. |
DOI: | 10.1186/s13287-024-03826-w |
Abstrakt: | Background: Commonly used media for the differentiation of human pluripotent stem cells into cardiomyocytes (hPSC-CMs) contain high concentrations of proteins, in particular albumin, which is prone to quality variations and presents a substantial cost factor, hampering the clinical translation of in vitro-generated cardiomyocytes for heart repair. To overcome these limitations, we have developed chemically defined, entirely protein-free media based on RPMI, supplemented with L-ascorbic acid 2-phosphate (AA-2P) and either the non-ionic surfactant Pluronic F-68 or a specific polyvinyl alcohol (PVA). Methods and Results: Both media compositions enable the efficient, directed differentiation of embryonic and induced hPSCs, matching the cell yields and cardiomyocyte purity ranging from 85 to 99% achieved with the widely used protein-based CDM3 medium. The protein-free differentiation approach was readily up-scaled to a 2000 mL process scale in a fully controlled stirred tank bioreactor in suspension culture, producing > 1.3 × 10 9 cardiomyocytes in a single process run. Transcriptome analysis, flow cytometry, electrophysiology, and contractile force measurements revealed that the mass-produced cardiomyocytes differentiated in protein-free medium exhibit the expected ventricular-like properties equivalent to the well-established characteristics of CDM3-control cells. Conclusions: This study promotes the robustness and upscaling of the cardiomyogenic differentiation process, substantially reduces media costs, and provides an important step toward the clinical translation of hPSC-CMs for heart regeneration. (© 2024. The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |