Effect of Novel and Traditional Intracanal Medicaments on Biofilm Viability and Composition.

Autor: Siu SY; Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR., Pudipeddi A; Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR., Vishwanath V; Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR., Cheng Lee AH; Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR., Tin Cheung AW; Department of Dental Surgery, University of Hong Kong-Shenzhen Hospital, Shenzhen, China., Pan Cheung GS; Department of Dental Surgery, University of Hong Kong-Shenzhen Hospital, Shenzhen, China. Electronic address: spcheung@hku.hk., Neelakantan P; Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR; Department of Endodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California. Electronic address: pneelakantan@pacific.edu.
Jazyk: angličtina
Zdroj: Journal of endodontics [J Endod] 2024 Oct; Vol. 50 (10), pp. 1412-1419. Date of Electronic Publication: 2024 Jul 15.
DOI: 10.1016/j.joen.2024.07.003
Abstrakt: Introduction: The aim of this study was to test the hypothesis that a combination of D-amino acids (DAAs) and trans-cinnamaldehyde (TC) demonstrates superior antibiofilm activity to calcium hydroxide (CH) and untreated controls.
Methods: In this 3-part in vitro study, the concentration of DAAs (D-methionine, D-leucine, D-tyrosine, and D-tryptophan) that would significantly decrease Enterococcus faecalis and Actinomyces naeslundii biofilm biomass was first determined. Then, the effect of TC + selected DAAs on polymicrobial biofilms was characterized by quantifying the biomass and biofilm viability. Finally, the antibiofilm effects of TC + DAA was compared with CH and untreated controls by (i) determining bacterial viability and (ii) quantifying biofilm matrix composition using selective fluorescence-binding analysis. Statistical analysis was performed using one-way ANOVA and appropriate multiple comparisons test, with P < .05 considered as statistically significant.
Results: TC (0.06%) + D-tyrosine (1 mM) + D-tryptophan (25 mM) significantly reduced the biomass and biofilm viability compared to the control (P < .05). While no significant difference was observed between TC + DAA and CH in the cultivable bacterial counts (P > .05), confocal microscopy demonstrated a significantly greater percentage of dead bacteria in TC + DAA-treated biofilms compared to CH and the control (P < .05). TC + DAA significantly decreased the biovolume and all the examined components of the biofilm matrix quantity compared to the control, while CH significantly reduced only the exopolysaccharide quantity (P < .05).
Conclusion: The combination of TC + D-tyrosine + D-tryptophan demonstrated superior antibiofilm activity (biofilm bacterial killing and reduction of matrix quantity) to CH and has potential to be developed as an intracanal medicament.
(Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
Databáze: MEDLINE