Tailoring metal oxide nanozymes for biomedical applications: trends, limitations, and perceptions.

Autor: Mathur P; Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindari, Kishangarh 305817, Ajmer, Rajasthan, India., Kumawat M; Department of Biotechnology, JECRC University, Sitapura Extension, Jaipur, 303905, Rajasthan, India., Nagar R; Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindari, Kishangarh 305817, Ajmer, Rajasthan, India., Singh R; Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, 522302, Andhra Pradesh, India. raginisingh@kluniversity.in., Daima HK; Nanomedicine and Nanotoxicity Research Laboratory, Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindari, Kishangarh 305817, Ajmer, Rajasthan, India. hemant.daima@curaj.ac.in.
Jazyk: angličtina
Zdroj: Analytical and bioanalytical chemistry [Anal Bioanal Chem] 2024 Nov; Vol. 416 (27), pp. 5965-5984. Date of Electronic Publication: 2024 Jul 16.
DOI: 10.1007/s00216-024-05416-4
Abstrakt: Nanomaterials with enzyme-like properties are known as 'nanozymes'. Nanozymes are preferred over natural enzymes due to their nanoscale characteristics and ease of tailoring of their physicochemical properties such as size, structure, composition, surface chemistry, crystal planes, oxygen vacancy, and surface valence state. Interestingly, nanozymes can be precisely controlled to improve their catalytic ability, stability, and specificity which is unattainable by natural enzymes. Therefore, tailor-made nanozymes are being favored over natural enzymes for a range of potential applications and better prospects. In this context, metal oxide nanoparticles with nanozyme-mimicking characteristics are exclusively being used in biomedical sectors and opening new avenues for future nanomedicine. Realising the importance of this emerging area, here, we discuss the mechanistic actions of metal oxide nanozymes along with their key characteristics which affect their enzymatic actions. Further, in this critical review, the recent progress towards the development of point-of-care (POC) diagnostic devices, cancer therapy, drug delivery, advanced antimicrobials/antibiofilm, dental caries, neurodegenerative diseases, and wound healing potential of metal oxide nanozymes is deliberated. The advantages of employing metal oxide nanozymes, their potential limitations in terms of nanotoxicity, and possible prospects for biomedical applications are also discussed with future recommendations.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.)
Databáze: MEDLINE