Estimation of genotype by environmental interaction for litter traits by reaction norm model in Taiwan Landrace sows.

Autor: Lin KH; Department of Animal Science, North Carolina State University, Raleigh, NC 27607, USA.; Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan., Flowers B; Department of Animal Science, North Carolina State University, Raleigh, NC 27607, USA., Knauer M; Department of Animal Science, North Carolina State University, Raleigh, NC 27607, USA., Lin EC; Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan.
Jazyk: angličtina
Zdroj: Journal of animal science [J Anim Sci] 2024 Jan 03; Vol. 102.
DOI: 10.1093/jas/skae189
Abstrakt: The negative effects of heat stress on swine reproduction have been well documented and the recent global warming trend caused by climate change is leading to more days with high temperatures every year. This has caused a reduction in litter trait performance of Landrace sows in Taiwan, a country extending across tropical and subtropical oceanic zones. Therefore, this study developed a modified model to determine which stages of pregnancy, before, early, middle, and late, had the largest impacts of heat stress on litter traits. A reaction norm model (RNM) was used to identify sows with high resilience to heat stress for litter traits followed by analysis of the modified model. Data from Landrace sows were collected from 2 farms in Taiwan between 2008 and 2021. A total of 11,059 records were collected for total number born (TNB), number born alive (NBA), and stillborn rate (STBR). The results showed that the heritabilities of TNB, NBA, and STBR were 0.170, 0.115, and 0.077, respectively. These results were similar between the conventional model and the modified model. In the modified model, the before and early stages of sow pregnancy were the significant periods for TNB and NBA (P < 0.05), while the early and middle stages were significant for STBR (P < 0.05). According to the RNM results, the heritability estimates for TNB, NBA, and STBR were 0.23 to 0.11, 0.18 to 0.08, and 0.10 to 0.04, respectively, showing a decrease from low temperature-humidity index (THI) to high THI. The minimum genetic correlations between the highest and the lowest THI for TNB, NBA, and STBR were 0.85, 0.64, and 0.80, respectively. The results of the RNM for breeding value showed re-ranking across THI values. In conclusion, similar results were obtained for heritability when the model was modified for heat stress estimation. Yet re-ranking of breeding values across THI could help farmers to select not only for improved litter trait performance but also for heat stress resilience of Landrace sows in Taiwan.
(© The Author(s) 2024. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
Databáze: MEDLINE