Myo-inositol oxygenase CgMIOX3 alleviates S-RNase-induced inhibition of incompatible pollen tubes in pummelo.

Autor: Xu Q; National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China., Liu C; National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China., Zhang Z; National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China., Cao Z; National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China., Liang M; National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China., Ye C; National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China., Lin Z; National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.; Hubei Hongshan Laboratory, Wuhan, 430070, China., Deng X; National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.; Hubei Hongshan Laboratory, Wuhan, 430070, China., Ye J; National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China., Bosch M; Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EB, UK., Chai L; National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
Jazyk: angličtina
Zdroj: Plant physiology [Plant Physiol] 2024 Oct 01; Vol. 196 (2), pp. 856-869.
DOI: 10.1093/plphys/kiae372
Abstrakt: Pummelo (Citrus grandis L. Osbeck) exhibits S-RNase-based self-incompatibility (SI), during which S-RNase cytotoxicity inhibits pollen tubes in an S-haplotype-specific manner. The entry of S-RNase into self-pollen tubes triggers a series of reactions. However, these reactions are still poorly understood in pummelo. In the present study, we used S-RNases as baits to screen a pummelo pollen cDNA library and characterized a myo-inositol oxygenase (CgMIOX3) that physically interacts with S-RNases. CgMIOX3 is highly expressed in pummelo pollen tubes, and its downregulation leads to a reduction in pollen tube growth. Upon entering pollen tubes, S-RNases increase the expression of CgMIOX3 and enhance its activity by directly binding to it in an S-haplotype-independent manner. CgMIOX3 improves pollen tube growth under oxidative stress through ascorbic acid (AsA) accumulation and increases the length of self-pollen tubes. Furthermore, over-expression of CgMIOX3 increases the relative length of self-pollen tubes growing in the style of petunia (Petunia hybrida). This study provides intriguing insights into the pumelo SI system, revealing a regulatory mechanism mediated by CgMIOX3 that plays an important role in the resistance of pollen tubes to S-RNase cytotoxicity.
Competing Interests: Conflict of interest statement. The authors declare that they have no conflict of intrest.
(© The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
Databáze: MEDLINE