Achieving sustainable trichloroethylene removal from nitrate-containing groundwater: Effects of particle size and dosage of microscale zero-valent iron on its synergistic action with anaerobic bacteria.

Autor: Zhao F; Key Lab of Marine Environment and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China., Xin J; Key Lab of Marine Environment and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China. Electronic address: xinj15@ouc.edu.cn., Wang L; Key Lab of Marine Environment and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China., Chen L; Key Lab of Marine Environment and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China., Wang X; Key Lab of Marine Environment and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China., Yuan M; Key Lab of Marine Environment and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
Jazyk: angličtina
Zdroj: Journal of environmental management [J Environ Manage] 2024 Aug; Vol. 366, pp. 121630. Date of Electronic Publication: 2024 Jul 09.
DOI: 10.1016/j.jenvman.2024.121630
Abstrakt: The coupling of microscale zero-valent iron (mZVI) and anaerobic bacteria (AB) has gained increasing attention due to its ability to enhance dechlorination efficiency by combining the advantages of chemical and microbial reduction. However, the implementation of these coupling technologies at the field scale is challenging in terms of sustainability goals due to the coexistence of various natural electron acceptors in groundwater, which leads to limited electron selectivity and increased secondary risk. Therefore, this study used trichloroethylene (TCE) as a probe contaminant and nitrate (NO 3 - ) as a typical co-occurring natural electron acceptor to optimize the overall sustainable remediation performance of an mZVI/AB coupled system by adjusting the mZVI particle size and dosage. Results revealed that mZVI particles of different sizes exhibit different microorganism activation capabilities. In contrast to its 2 μm and 7 μm counterparts, the 30 μm mZVI/AB system demonstrated a strong dosage-dependency in TCE removal and its product selectivity. Finally, multi-criteria analysis (MCA) methods were established to comprehensively rank the alternatives, and 30 μm mZVI (15 g/L dosage) was determined to be the best remediation strategy with the highest total sustainability score under all studied hydro-chemical conditions when equal weights were applied to technical, environmental, and economic indicators. Our work provides a paradigm for comprehensively assessing the sustainable remediation performance of chlorinated aliphatic hydrocarbons polluted groundwater in practical applications.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 Elsevier Ltd. All rights reserved.)
Databáze: MEDLINE