Covalent Isothiocyanate Inhibitors of Macrophage Migration Inhibitory Factor as Potential Colorectal Cancer Treatments.
Autor: | Putha L; School of Pharmacy, University of Otago, PO Box 56, Dunedin, 9054, New Zealand., Kok LK; School of Pharmacy, University of Otago, PO Box 56, Dunedin, 9054, New Zealand., Fellner M; Department of Biochemistry, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand., Rutledge MT; Department of Biochemistry, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand., Gamble AB; School of Pharmacy, University of Otago, PO Box 56, Dunedin, 9054, New Zealand., Wilbanks SM; Department of Biochemistry, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand., Vernall AJ; Department of Chemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand., Tyndall JDA; School of Pharmacy, University of Otago, PO Box 56, Dunedin, 9054, New Zealand. |
---|---|
Jazyk: | angličtina |
Zdroj: | ChemMedChem [ChemMedChem] 2024 Nov 04; Vol. 19 (21), pp. e202400394. Date of Electronic Publication: 2024 Sep 13. |
DOI: | 10.1002/cmdc.202400394 |
Abstrakt: | Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that has roles in innate and adaptive human immune responses, as well as inflammation. MIF exerts its biological activity by binding to the cell surface receptor CD74 as well as intracellular signalling proteins. MIF also possesses keto-enol tautomerase activity. Inhibition of the tautomerase activity has been associated with loss of biological activity of MIF and a potential anticancer target. Isothiocyanates (ITCs) are a class of compounds present in cruciferous vegetables that inhibit the MIF tautomerase activity via covalent modification of the N-terminal proline. A range of substituted ITCs featuring benzyl, phenethyl and phenyl propyl isothiocyanates were designed, synthesised and tested to determine any structure activity relationship for inhibiting MIF. Crystal structures of covalent compounds 8 and 9 in complex with rhMIF revealed key hydrogen bonding and edge-to-face π stacking interactions. Compound 9 and 11 with sub micromolar activity were tested in the NCI60 cancer cell lines panel. Both compounds showed tissue-specific reduced growth in colon and renal cancer cell lines, while one of these showed potent, dose-dependent inhibition of growth against all seven colon cancer cell lines (GI (© 2024 The Author(s). ChemMedChem published by Wiley-VCH GmbH.) |
Databáze: | MEDLINE |
Externí odkaz: |