Irinotecan-loaded magnetite-silica core-shell systems for colorectal cancer treatment.
Autor: | Chircov C; Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania. Electronic address: cristina.chircov@upb.ro., Petcu MC; Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania. Electronic address: mihai_catalin.petcu@stud.fim.upb.ro., Vasile BS; National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; National Research Center for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania. Electronic address: bogdan.vasile@upb.ro., Purcăreanu B; Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; BIOTEHNOS SA, Gorunului Street 3-5, 075100 Otopeni, Romania. Electronic address: bogdan.purcareanu@biotehnos.com., Nicoară AI; Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania. Electronic address: adrian.nicoara@upb.ro., Oprea OC; National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu Str., 011061 Bucharest, Romania. Electronic address: ovidiu.oprea@upb.ro., Popescu RC; Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; Department of Life and Environmental Science, National Institute for R&D in Physics and Nuclear Engineering Horia Hulubei, 30 Reactorului, 077125 Magurele, Romania. Electronic address: roxana.popescu@nipne.ro. |
---|---|
Jazyk: | angličtina |
Zdroj: | International journal of pharmaceutics [Int J Pharm] 2024 Aug 15; Vol. 661, pp. 124420. Date of Electronic Publication: 2024 Jul 05. |
DOI: | 10.1016/j.ijpharm.2024.124420 |
Abstrakt: | Colorectal cancer represents a worldwide spread type of cancer and it is regarded as one of the leading death causes, along with lung, breast, and prostate cancers. Since conventional surgical resection and chemotherapy proved limited efficiency, the use of alternative drug delivery systems that ensure the controlled release of cytostatic agents possess immense potential for treatment. In this regard, the present study aimed to develop and evaluate the efficiency of a series of irinotecan-loaded magnetite-silica core-shell systems. The magnetite particles were obtained through a solvothermal treatment, while the silica shell was obtained through the Stöber method directly onto the surface of magnetite particles. Subsequently, the core-shell systems were physico-chemically and morpho-structurally evaluated trough X-ray diffraction (XRD) and (high-resolution) transmission electron microscopy ((HR-)TEM) equipped with a High Annular Angular Dark Field Detector (HAADF) for elemental mapping. After the irinotecan loading, the drug delivery systems were evaluated through Fourier-transform infrared spectroscopy (FT-IR), thermogravimetry and differential scanning calorimetry (TG-DSC), and UV-Vis spectrophotometry. Additionally, the Brunauer-Emmett-Teller (BET) method was employed for determining the surface area and pore volume of the systems. The biological functionality of the core-shells was investigated through the MTT assay performed on both normal and cancer cells. The results of the study confirmed the formation of highly crystalline magnetite particles comprising the core and mesoporous silica layers of sizes varying between 2 and 7 nm as the shell. Additionally, the drug loading and release was dependent on the type of the silica synthesis procedure, since the lack of hexadecyltrimethylammonium bromide (CTAB) resulted in higher drug loading but lower cumulative release. Moreover, the nanostructured systems demonstrated a targeted efficiency towards HT-29 colorectal adenocarcinoma cells, as in the case of normal L929 fibroblast cells, the cell viability was higher than for the pristine drug. In this manner, this study provides the means and procedures for developing drug delivery systems with applicability in the treatment of cancer. Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: [Adrian Ionut Nicoara reports financial support and equipment, drugs, or supplies were provided by National Center for Micro and Nanomaterials. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper]. (Copyright © 2024. Published by Elsevier B.V.) |
Databáze: | MEDLINE |
Externí odkaz: |