[Construction of CD138-targeted chimeric antigen receptor- modified T cells and their effect in multiple myeloma therapy].

Autor: Guo CC; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China., Lu Y; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China., Tang KJ; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China., Xing HY; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China., Tian Z; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China., Rao Q; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China., Wang M; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China., Xiong DS; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China., Wang JX; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China.
Jazyk: čínština
Zdroj: Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi [Zhonghua Xue Ye Xue Za Zhi] 2024 May 14; Vol. 45 (5), pp. 436-444.
DOI: 10.3760/cma.j.cn121090-20240131-00047
Abstrakt: Objective: To construct a novel chimeric antigen receptor T (CAR-T) cell targeting CD138 and to investigate its cytotoxicity against myeloma cells. Methods: The hybridoma strain that can stably secrete the CD138 monoclonal antibody (mAb) was prepared and obtained through monoclonal antibody screening technology. The hybridoma strain cells were intraperitoneally injected into mice to produce ascites containing monoclonal antibodies, which were then collected and purified to obtain pure CD138 mAb. Further examinations were performed to assess the biological characteristics of CD138 mAb. The variable region sequence of this antibody was amplified through reverse transcription polymerase chain reaction and was used as the antigen recognition domain of CD138 CAR, which was subsequently expressed on the surface of T cells by lentiviral infection. Flow cytometry was employed to assess the phenotype of CD138 CAR-T cells. In vitro cytotoxicity and degranulation assays were performed to evaluate their antitumor effects. Results: ① We successfully prepared anti-human CD138 antibody hybridoma cell lines and screened a hybridoma cell strain, 5G2, which could persistently and stably secrete the anti-CD138 antibody. ② The purified CD138 (5G2) mAb can especially recognize CD138(+) cells with a binding affinity constant (K(D)) of 6.011×10(-9) mol/L and showed no significant binding activity with CD138(-) cells. ③The variable region sequence of the CD138 (5G2) antibody was obtained using molecular cloning technology, and CD138 (5G2) CAR was successfully constructed and expressed on T cells through lentivirus infection and, concurrently, demonstrated effective binding to recombinant human CD138 protein.④ The proliferation of T cells transduced with the CD138 (5G2) CAR was highly efficient. The phenotype analysis revealed that CD138 (5G2) CAR-T cells exhibited a greater tendency to differentiate into central memory T cells and memory stem T cells, with a reduced proportion of terminally differentiated effector memory subsets. ⑤CD138 (5G2) CAR-T cells demonstrated specific cytotoxicity against CD138(+) myeloma cell line H929, whereas CD138(-) cell line K562 remained unaffected. The percentage of residual H929 cells was (12.92±8.02) % after co-culturing with CD138 (5G2) CAR-T cells, while (54.25±15.79) % was left in the Vector-T group (E∶T=1∶2; P <0.001). ⑥Results of degranulation assays demonstrated a significant activation of CD138 (5G2) CAR-T cells after co-culture with the H929 cell line, whereas no significant activation was observed in Vector-T cells [ (25.78±3.35) % vs (6.13±1.30) %, P <0.001]. ⑦After co-culturing with CD138(+) cells, CD138 (5G2) CAR-T cells exhibited a significant increase in cytokine secretion compared to the Vector-T group [interleukin-2: (1 697.52±599.05) pg/ml vs (5.07±1.17) pg/ml, P <0.001; interferon-γ: (3 312.20±486.38) pg/ml vs (9.28±1.46) pg/ml, P <0.001; and tumor necrosis factor-α: (1 837.43±640.49) pg/ml vs (8.75±1.65) pg/ml, P <0.001]. However, no significant difference was observed in cytokine secretion levels between the two groups after co-culturing with CD138(-) cells. Conclusion: This study successfully prepared a novel monoclonal antibody against CD138, and CAR-T cells constructed with the antigen recognition domain derived from this 5G2 mAb demonstrated effective antitumor activity against myeloma cells. This can be used as a new option for the detection of the CD138 antigen and proposes a novel strategy for multiple myeloma immunotherapy.
Databáze: MEDLINE