Genomic epidemiology and evolution of rhinovirus in western Washington State, 2021-22.

Autor: Goya S; Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA., Wendm ST; Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA., Xie H; Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA., Nguyen TV; Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA., Barnes S; Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA., Shankar RR; Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA., Sereewit J; Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA., Cruz K; Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA., Pérez-Osorio AC; Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA., Mills MG; Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA., Greninger AL; Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA.; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Jazyk: angličtina
Zdroj: The Journal of infectious diseases [J Infect Dis] 2024 Jul 04. Date of Electronic Publication: 2024 Jul 04.
DOI: 10.1093/infdis/jiae347
Abstrakt: Background: Human rhinoviruses (RV) primarily cause the common cold, but infection outcomes vary from subclinical to severe cases, including asthma exacerbations and fatal pneumonia in immunocompromised individuals. To date, therapeutic strategies have been hindered by the high diversity of serotypes. Global surveillance efforts have traditionally focused on sequencing VP1 or VP2/VP4 genetic regions, leaving gaps in our understanding of RV genomic diversity.
Methods: We sequenced 1,078 RV genomes from nasal swabs of symptomatic and asymptomatic individuals to explore viral evolution during two epidemiologically distinct periods in Washington State: when the COVID-19 pandemic affected the circulation of other seasonal respiratory viruses except for RV (February - July 2021), and when the seasonal viruses reemerged with the severe RSV and influenza outbreak (November-December 2022). We constructed maximum likelihood and BEAST-phylodynamic trees to characterize intra-genotype evolution.
Results: We detected 99 of 168 known genotypes and observed inter-genotypic recombination and genotype cluster swapping from 2021 to 2022. We found a significant association between the presence of symptoms and viral load, but not with RV species or genotype. Phylodynamic trees, polyprotein selection pressure, and Shannon entropy revealed co-circulation of divergent clades within genotypes with high amino acid constraints throughout polyprotein.
Discussion: Our study underscores the dynamic nature of RV genomic epidemiology within a localized geographic region, as more than 20% of existing genotypes within each RV species co-circulated each studied month. Our findings also emphasize the importance of investigating correlations between rhinovirus genotypes and serotypes to understand long-term immunity and cross-protection.
(© The Author(s) 2024. Published by Oxford University Press on behalf of Infectious Diseases Society of America.)
Databáze: MEDLINE