Comprehensive survey of conserved RNA secondary structures in full-genome alignment of Hepatitis C virus.

Autor: Triebel S; RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany.; European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743, Jena, Germany., Lamkiewicz K; RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany.; European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743, Jena, Germany., Ontiveros N; European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK., Sweeney B; European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK., Stadler PF; European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743, Jena, Germany.; Bioinformatics Group, Institute of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig, 04107, Leipzig, Germany.; German Center for Integrative Biodiversity Research (iDiv), 04103, Leipzig, Germany., Petrov AI; Riboscope Ltd., Cambridge, CB1 1AH, UK., Niepmann M; Institute for Biochemistry, Justus-Liebig-University Giessen, 35392, Giessen, Germany., Marz M; RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany. manja@uni-jena.de.; European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743, Jena, Germany. manja@uni-jena.de.; Leibniz Institute on Aging-Fritz Lipmann Institute, 07745, Jena, Germany. manja@uni-jena.de.; German Center for Integrative Biodiversity Research (iDiv), 04103, Leipzig, Germany. manja@uni-jena.de.; Michael Stifel Center Jena, Friedrich Schiller University Jena, 07743, Jena, Germany. manja@uni-jena.de.; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany. manja@uni-jena.de.
Jazyk: angličtina
Zdroj: Scientific reports [Sci Rep] 2024 Jul 02; Vol. 14 (1), pp. 15145. Date of Electronic Publication: 2024 Jul 02.
DOI: 10.1038/s41598-024-62897-0
Abstrakt: Hepatitis C virus (HCV) is a plus-stranded RNA virus that often chronically infects liver hepatocytes and causes liver cirrhosis and cancer. These viruses replicate their genomes employing error-prone replicases. Thereby, they routinely generate a large 'cloud' of RNA genomes (quasispecies) which-by trial and error-comprehensively explore the sequence space available for functional RNA genomes that maintain the ability for efficient replication and immune escape. In this context, it is important to identify which RNA secondary structures in the sequence space of the HCV genome are conserved, likely due to functional requirements. Here, we provide the first genome-wide multiple sequence alignment (MSA) with the prediction of RNA secondary structures throughout all representative full-length HCV genomes. We selected 57 representative genomes by clustering all complete HCV genomes from the BV-BRC database based on k-mer distributions and dimension reduction and adding RefSeq sequences. We include annotations of previously recognized features for easy comparison to other studies. Our results indicate that mainly the core coding region, the C-terminal NS5A region, and the NS5B region contain secondary structure elements that are conserved beyond coding sequence requirements, indicating functionality on the RNA level. In contrast, the genome regions in between contain less highly conserved structures. The results provide a complete description of all conserved RNA secondary structures and make clear that functionally important RNA secondary structures are present in certain HCV genome regions but are largely absent from other regions. Full-genome alignments of all branches of Hepacivirus C are provided in the supplement.
(© 2024. The Author(s).)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje