Modeling normal mouse uterine contraction and placental perfusion with non-invasive longitudinal dynamic contrast enhancement MRI.
Autor: | Cortes DRE; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America., Stapleton MC; Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States of America., Schwab KE; Rangos Research Center Animal Imaging Core, Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America., West D; Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States of America., Coulson NW; Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States of America., O'Donnell MG; Department of Biology, Thiel College, Greenville, PA, United States of America., Christodoulou AG; Department of Radiological Sciences and Engineering, University of California, Los Angeles, California, United States of America., Powers RW; Magee-Womens Research Institute, Pittsburgh, PA, United States of America., Wu YL; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America.; Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States of America.; Rangos Research Center Animal Imaging Core, Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America. |
---|---|
Jazyk: | angličtina |
Zdroj: | PloS one [PLoS One] 2024 Jul 01; Vol. 19 (7), pp. e0303957. Date of Electronic Publication: 2024 Jul 01 (Print Publication: 2024). |
DOI: | 10.1371/journal.pone.0303957 |
Abstrakt: | Background: The placenta is a transient organ critical for fetal development. Disruptions of normal placental functions can impact health throughout an individual's entire life. Although being recognized by the NIH Human Placenta Project as an important organ, the placenta remains understudied, partly because of a lack of non-invasive tools for longitudinally evaluation for key aspects of placental functionalities. Objective: Our goal is to create a non-invasive preclinical imaging pipeline that can longitudinally probe murine placental health in vivo. We use advanced imaging processing schemes to establish functional biomarkers for non-invasive longitudinal evaluation of placental development. Methodology: We implement dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) and analysis pipeline to quantify uterine contraction and placental perfusion dynamics. We use optic flow and time-frequency analysis to quantify and characterize contraction-related placental motion. Our novel imaging and analysis pipeline uses subcutaneous administration of gadolinium for steepest slope-based perfusion evaluation, enabling non-invasive longitudinal monitoring. Results: We demonstrate that the placenta exhibits spatially asymmetric contractile motion that develops from E14.5 to E17.5. Additionally, we see that placental perfusion, perfusion delivery rate, and substrate delivery all increase from E14.5 to E17.5, with the High Perfusion Chamber (HPC) leading the placental changes that occur from E14.5 to E17.5. Discussion: We advance the placental perfusion chamber paradigm with a novel, physiologically based threshold model for chamber localization and demonstrate spatially varying placental chambers using multiple functional metrics that assess mouse placental development and remodeling throughout gestation. Conclusion: Our pipeline enables the non-invasive, longitudinal assessment of multiple placenta functions from a single imaging session. Our pipeline serves as a key toolbox for advancing research in mouse models of placental disease and disorder. Competing Interests: The authors have declared that no competing interests exist. (Copyright: © 2024 Cortes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |