Insights into the LiMn 2 O 4 Cathode Stability in Aqueous Electrolytes.

Autor: Gonzalez-Rosillo JC; Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Planta 2, 08930 Sant Adrià del Besòs, Barcelona, Spain., Guc M; Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Planta 2, 08930 Sant Adrià del Besòs, Barcelona, Spain., Liedke MO; Institute of Radiation Physics, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany., Butterling M; Institute of Radiation Physics, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany., Attallah AG; Institute of Radiation Physics, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany., Hirschmann E; Institute of Radiation Physics, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany., Wagner A; Institute of Radiation Physics, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany., Izquierdo-Roca V; Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Planta 2, 08930 Sant Adrià del Besòs, Barcelona, Spain., Baiutti F; Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Planta 2, 08930 Sant Adrià del Besòs, Barcelona, Spain., Morata A; Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Planta 2, 08930 Sant Adrià del Besòs, Barcelona, Spain., Tarancón A; Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Planta 2, 08930 Sant Adrià del Besòs, Barcelona, Spain.; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
Jazyk: angličtina
Zdroj: Chemistry of materials : a publication of the American Chemical Society [Chem Mater] 2024 Jun 03; Vol. 36 (12), pp. 6144-6153. Date of Electronic Publication: 2024 Jun 03 (Print Publication: 2024).
DOI: 10.1021/acs.chemmater.4c00888
Abstrakt: LiMn 2 O 4 (LMO) cathodes present large stability when cycled in aqueous electrolytes, contrasting with their behavior in conventional organic electrolytes in lithium-ion batteries (LIBs). To elucidate the mechanisms underlying this distinctive behavior, we employ unconventional characterization techniques, including variable energy positron annihilation lifetime spectroscopy (VEPALS), tip-enhanced Raman spectroscopy (TERS), and macro-Raman spectroscopy (with tens of μm-size laser spot). These still rather unexplored techniques in the battery field provide complementary information across different length scales, revealing previously hidden features. VEPALS offers atomic-scale insights, uncovering cationic defects and subnanometer pores that tend to collapse with cycling. TERS, operating in the nanometric range at the surface, captured the presence of Mn 3 O 4 and its dissolution with cycling, elucidating dynamic changes during operation. Additionally, TERS highlights the accumulation of SO 4 2- at grain boundaries. Macro-Raman spectroscopy focuses on the micrometer scale, depicting small changes in the cathode's long-range order, suggesting a slow but progressive loss of crystalline quality under operation. Integrating these techniques provides a comprehensive assessment of LMO cathode stability in aqueous electrolytes, offering multifaceted insights into phase and defect evolution that can help to rationalize the origin of such stability when compared with conventional organic electrolytes. Our findings advance the understanding of LMO behavior in aqueous environments and provide guidelines for its development for next-generation LIBs.
Competing Interests: The authors declare no competing financial interest.
(© 2024 The Authors. Published by American Chemical Society.)
Databáze: MEDLINE