The histone-like nucleoid-structuring protein encoded by the plasmid pMBL6842 regulates both plasmid stability and host physiology of Pseudoalteromonas rubra SCSIO 6842.

Autor: Li B; Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China., Ni S; Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China., Liu Y; Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China., Lin J; Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China., Wang X; Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address: xxwang@scsio.ac.cn.
Jazyk: angličtina
Zdroj: Microbiological research [Microbiol Res] 2024 Sep; Vol. 286, pp. 127817. Date of Electronic Publication: 2024 Jun 26.
DOI: 10.1016/j.micres.2024.127817
Abstrakt: Plasmids orchestrate bacterial adaptation across diverse environments and facilitate lateral gene transfer within bacterial communities. Their presence can perturb host metabolism, creating a competitive advantage for plasmid-free cells. Plasmid stability hinges on efficient replication and partition mechanisms. While plasmids commonly encode histone-like nucleoid-structuring (H-NS) family proteins, the precise influence of plasmid-encoded H-NS proteins on stability remains elusive. In this study, we examined the conjugative plasmid pMBL6842, harboring the hns gene, and observed its positive regulation of parAB transcription, critical for plasmid segregation. Deletion of hns led to rapid plasmid loss, which was remedied by hns complementation. Further investigations unveiled adverse effects of hns overexpression on the bacterial host. Transcriptome analysis revealed hns's role in regulating numerous bacterial genes, impacting both host growth and swimming motility in the presence of the hns gene. Therefore, our study unveils the multifaceted roles of H-NS in both plasmid stability and host physiology, underscoring its biological significance and paving the way for future inquiries into the involvement of H-NS in horizontal gene transfer events.
Competing Interests: Declaration of Competing Interest The authors declare no competing interests.
(Copyright © 2024 Elsevier GmbH. All rights reserved.)
Databáze: MEDLINE