Antibody-mediated immunological memory correlates with long-term Lyme veterinary vaccine protection in mice.

Autor: Gutierrez MP; Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA., Huckaby AB; Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA., Yang E; Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA., Weaver KL; Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA., Hall JM; Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA., Hudson M; Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA., Dublin SR; Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA., Sen-Kilic E; Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA., Rocuskie-Marker CM; Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA., Miller SJ; Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA., Pritchett CL; College of Public Health, East Tennessee State University, Johnson City, TN, USA., Mummadisetti MP; AVM Biomed, Pottstown, PA, USA., Zhang Y; Department of Biology, West Virginia University, Morgantown, WV, USA., Driscoll T; Department of Biology, West Virginia University, Morgantown, WV, USA., Barbier M; Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA. Electronic address: mabarbier@hsc.wvu.edu.
Jazyk: angličtina
Zdroj: Vaccine [Vaccine] 2024 Oct 24; Vol. 42 (24), pp. 126084. Date of Electronic Publication: 2024 Jun 26.
DOI: 10.1016/j.vaccine.2024.06.051
Abstrakt: Lyme disease, caused by the bacterium Borrelia burgdorferi, is the most common tick-borne illness in the United States. Despite the rise in Lyme disease incidence, there is no vaccine against B. burgdorferi approved for human use. Little is known about the immune correlates of protection needed to prevent Lyme disease. In this work, a mouse model was used to characterize the immune response and compare the protection provided by two USDA-approved vaccines for use in canines: Duramune (bacterin vaccine) and Vanguard crLyme (subunit vaccine composed of two outer surface proteins, OspA and OspC). C3H/HeNCrl mice were immunized with two doses of either Duramune or Vanguard, and immune responses and protection against B. burgdorferi were assessed in short (35 days) and long-term (120 days) studies. Flow cytometry, ELISPOT detection of antibody-producing cells, and antibody affinity studies were performed to identify correlates of vaccine-mediated protection. Both vaccines induced humoral responses, with high IgG titers against B. burgdorferi. However, the levels of anti-B. burgdorferi antibodies decayed over time in Vanguard-vaccinated mice. While both vaccines triggered the production of antibodies against both OspA and OspC, antibody levels against these proteins were also lower in Vanguard-vaccinated mice 120 days post-vaccination. Both vaccines only provided partial protection against B. burgdorferi at the dose used in this model. The protection provided by Duramune was superior to Vanguard 120 days post-vaccination, and was characterized by higher antibody titers, higher abundance of long-lived plasma cells, and higher avidity antibodies than Vanguard. Overall, these studies provide insights into the importance of the humoral memory response to veterinary vaccines against Lyme disease and will help inform the development of future human vaccines.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
Databáze: MEDLINE