Dedicated Photon-Counting CT for Detection and Classification of Microcalcifications: An Intraindividual Comparison With Digital Breast Tomosynthesis.

Autor: Huck LC; From the Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Aachen, Germany (L.C.H., M.B., E.Z., C.W., V.R., E.D., C.K.K.); Department of Diagnostic and Interventional Radiology, University Hospital Freiburg, Freiburg, Germany (C.W.); Department of Radiology, University Hospital Erlangen, Erlangen, Germany (E.W.); and Department of Radiology, Radiology München, München, Germany (E.W.)., Bode M, Zanderigo E, Wilpert C, Raaff V, Dethlefsen E, Wenkel E, Kuhl CK
Jazyk: angličtina
Zdroj: Investigative radiology [Invest Radiol] 2024 Jun 27. Date of Electronic Publication: 2024 Jun 27.
DOI: 10.1097/RLI.0000000000001097
Abstrakt: Objectives: Clinical experience regarding the use of dedicated photon-counting breast CT (PC-BCT) for diagnosis of breast microcalcifications is scarce. This study systematically compares the detection and classification of breast microcalcifications using a dedicated breast photon-counting CT, especially designed for examining the breast, in comparison with digital breast tomosynthesis (DBT).
Materials and Methods: This is a prospective intraindividual study on women with DBT screening-detected BI-RADS-4/-5 microcalcifications who underwent PC-BCT before biopsy. PC-BCT images were reconstructed with a noninterpolated spatial resolution of 0.15 × 0.15 × 0.15 mm (reconstruction mode 1 [RM-1]) and with 0.3 × 0.3 × 0.3 mm (reconstruction mode 2 [RM-2]), plus thin-slab maximum intensity projection (MIP) reconstructions. Two radiologists independently rated the detection of microcalcifications in direct comparison with DBT on a 5-point scale. The distribution and morphology of microcalcifications were then rated according to BI-RADS. The size of the smallest discernible microcalcification particle was measured. For PC-BCT, the average glandular dose was determined by Monte Carlo simulations; for DBT, the information provided by the DBT system was used.
Results: Between September 2022 and July 2023, 22 participants (mean age, 61; range, 42-85 years) with microcalcifications (16 malignant; 6 benign) were included. In 2/22 with microcalcifications in the posterior region, microcalcifications were not detectable on PC-BCT, likely because they were not included in the PC-BCT volume. In the remaining 20 participants, microcalcifications were detectable. With high between-reader agreement (κ > 0.8), conspicuity of microcalcifications was rated similar for DBT and MIPs of RM-1 (mean, 4.83 ± 0.38 vs 4.86 ± 0.35) (P = 0.66), but was significantly lower (P < 0.05) for the remaining PC-BCT reconstructions: 2.11 ± 0.92 (RM-2), 2.64 ± 0.80 (MIPs of RM-2), and 3.50 ± 1.23 (RM-1). Identical distribution qualifiers were assigned for PC-BCT and DBT in 18/20 participants, with excellent agreement (κ = 0.91), whereas identical morphologic qualifiers were assigned in only 5/20, with poor agreement (κ = 0.44). The median size of smallest discernible microcalcification particle was 0.2 versus 0.6 versus 1.1 mm in DBT versus RM-1 versus RM-2 (P < 0.001), likely due to blooming effects. Average glandular dose was 7.04 mGy (PC-BCT) versus 6.88 mGy (DBT) (P = 0.67).
Conclusions: PC-BCT allows reliable detection of in-breast microcalcifications as long as they are not located in the posterior part of the breast and allows assessment of their distribution, but not of their individual morphology.
Competing Interests: Conflicts of interest: none declared.
(Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.)
Databáze: MEDLINE