Adjuvant Delivery Method and Nanoparticle Charge Influence Peptide Amphiphile Micelle Vaccine Bioactivity.

Autor: Zhang R, Rygelski BT, Kruse LE, Smith JD, Wang X, Allen BN, Kramer JS, Seim GF, Faulkner TJ, Kuang H, Kokkoli E, Schrum AG, Ulery BD
Jazyk: angličtina
Zdroj: BioRxiv : the preprint server for biology [bioRxiv] 2024 Oct 03. Date of Electronic Publication: 2024 Oct 03.
DOI: 10.1101/2024.06.10.598369
Abstrakt: Vaccines are an indispensable public health measure that have enabled the eradication, near elimination, and prevention of a variety of pathogens. As research continues and our understanding of immunization strategies develops, subunit vaccines have emerged as exciting alternatives to existing whole vaccine approaches. Unfortunately, subunit vaccines often possess weak antigenicity, requiring delivery devices and adjuvant supplementation to improve their utility. Peptide amphiphile micelles have recently been shown to function as both delivery devices and self-adjuvanting systems that can be readily associated with molecular adjuvants to further improve vaccine-mediated host immunity. While promising, many design rules associated with the plethora of underlying adjustable parameters in the generation of a peptide amphiphile micelle vaccine have yet to be uncovered. This work explores the impact micellar adjuvant complexation method and incorporated antigen type have on their ability to activate dendritic cells and induce antigen specific responses. Interestingly, electrostatic complexation of CpG to micelles resulted in improved in vitro dendritic cell activation over hydrophobic association and antigen|adjuvant co-localization influenced cell-mediated, but not antibody-mediated immune responses. These exciting results complement those previously published to build the framework of a micelle vaccine toolbox that can be leveraged for future disease specific formulations.
Databáze: MEDLINE