Endothelial Drp1 Couples VEGF-induced Redox Signaling with Glycolysis Through Cysteine Oxidation to Drive Angiogenesis.

Autor: Nagarkoti S, Kim YM, Das A, Ash D, A Vitriol E, Read TA, Sudhahar V, Hossain MS, Yadav S, McMenamin M, Kelley S, Lucas R, Stepp D, Belin de Chantemele EJ, Caldwell RB, Fulton DJ, Fukai T, Ushio-Fukai M
Jazyk: angličtina
Zdroj: BioRxiv : the preprint server for biology [bioRxiv] 2024 Jun 16. Date of Electronic Publication: 2024 Jun 16.
DOI: 10.1101/2024.06.15.599174
Abstrakt: Angiogenesis plays a vital role for postnatal development and tissue repair following ischemia. Reactive oxygen species (ROS) generated by NADPH oxidases (NOXes) and mitochondria act as signaling molecules that promote angiogenesis in endothelial cells (ECs) which mainly relies on aerobic glycolysis for ATP production. However, the connections linking redox signaling with glycolysis are not well understood. The GTPase Drp1 is a member of the dynamin superfamily that moves from cytosol to mitochondria through posttranslational modifications to induce mitochondrial fission. The role of Drp1 in ROS-dependent VEGF signaling and angiogenesis in ECs has not been previously described. Here, we identify an unexpected function of endothelial Drp1 as a redox sensor, transmitting VEGF-induced H 2 O 2 signals to enhance glycolysis and angiogenesis. Loss of Drp1 expression in ECs inhibited VEGF-induced angiogenic responses. Mechanistically, VEGF rapidly induced the NOX4-dependent sulfenylation (CysOH) of Drp1 on Cys 644 , promoting disulfide bond formation with the metabolic kinase AMPK and subsequent sulfenylation of AMPK at Cys 299 / 304 via the mitochondrial fission-mitoROS axis. This cysteine oxidation of AMPK, in turn, enhanced glycolysis and angiogenesis. In vivo , mice with EC-specific Drp1 deficiency or CRISPR/Cas9-engineered "redox-dead" (Cys to Ala) Drp1 knock-in mutations exhibited impaired retinal angiogenesis and post-ischemic neovascularization. Our findings uncover a novel role for endothelial Drp1 in linking VEGF-induced mitochondrial redox signaling to glycolysis through a cysteine oxidation-mediated Drp1-AMPK redox relay, driving both developmental and reparative angiogenesis.
Databáze: MEDLINE