Magnon interactions in a moderately correlated Mott insulator.

Autor: Wang Q; Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China. qwang@cuhk.edu.hk.; Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland. qwang@cuhk.edu.hk., Mustafi S; Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland., Fogh E; Institute of Physics, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland., Astrakhantsev N; Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland., He Z; Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 100049, Beijing, China.; Spallation Neutron Source Science Center (SNSSC), Dongguan, 523803, China., Biało I; Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.; AGH University of Krakow, Faculty of Physics and Applied Computer Science, 30-059, Krakow, Poland., Chan Y; Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China., Martinelli L; Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland., Horio M; Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland., Ivashko O; Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland., Shaik NE; Institute of Physics, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland., Arx KV; Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland., Sassa Y; Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden., Paris E; Swiss Light Source, Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland., Fischer MH; Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland., Tseng Y; Swiss Light Source, Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland., Christensen NB; Department of Physics, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark., Galdi A; Dipartimento di Ingegneria Industriale, Universita' degli Studi di Salerno, 84084, Fisciano, SA, Italy.; Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14850, USA., Schlom DG; Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14850, USA.; Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA., Shen KM; Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA.; Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, 14853, USA., Schmitt T; Swiss Light Source, Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland., Rønnow HM; Institute of Physics, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland., Chang J; Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland. johan.chang@physik.uzh.ch.
Jazyk: angličtina
Zdroj: Nature communications [Nat Commun] 2024 Jun 24; Vol. 15 (1), pp. 5348. Date of Electronic Publication: 2024 Jun 24.
DOI: 10.1038/s41467-024-49714-y
Abstrakt: Quantum fluctuations in low-dimensional systems and near quantum phase transitions have significant influences on material properties. Yet, it is difficult to experimentally gauge the strength and importance of quantum fluctuations. Here we provide a resonant inelastic x-ray scattering study of magnon excitations in Mott insulating cuprates. From the thin film of SrCuO 2 , single- and bi-magnon dispersions are derived. Using an effective Heisenberg Hamiltonian generated from the Hubbard model, we show that the single-magnon dispersion is only described satisfactorily when including significant quantum corrections stemming from magnon-magnon interactions. Comparative results on La 2 CuO 4 indicate that quantum fluctuations are much stronger in SrCuO 2 suggesting closer proximity to a magnetic quantum critical point. Monte Carlo calculations reveal that other magnetic orders may compete with the antiferromagnetic Néel order as the ground state. Our results indicate that SrCuO 2 -due to strong quantum fluctuations-is a unique starting point for the exploration of novel magnetic ground states.
(© 2024. The Author(s).)
Databáze: MEDLINE