Abstrakt: |
Brain-Computer Interface (BCI) has gained remarkable prominence in biomedical community. While BCI holds vast potential across diverse domains, the implantation of neural electrodes poses multifaceted challenges to fully explore the power of BCI. Conventional rigid electrodes face the problem of foreign body reaction induced by mechanical mismatch to biological tissue, while flexible electrodes, though more preferential, lack controllability during implantation. Researchers have explored various strategies, from assistive shuttle to biodegradable coatings, to strike a balance between implantation rigidity and post-implantation flexibility. Yet, these approaches may introduce complications, including immune response, inflammations, and raising intracranial pressure. To this end, this paper proposes a novel nanorobot-based technique for direct implantation of flexible neural electrodes, leveraging the high controllability and repeatability of robotics to enhance the implantation quality. This approach features a dual-arm nanorobotic system equipped with stereo microscope, by which a flexible electrode is first visually aligned to the target neural tissue to establish contact and thereafter implanted into brain with well controlled insertion direction and depth. The key innovation is, through dual-arm coordination, the flexible electrode maintains straight along the implantation direction. With this approach, we implanted CNTf electrodes into cerebral cortex of mouse, and captured standard spiking neural signals. |