Electronic Transport Modulation in Ultrastrained Silicon Nanowire Devices.

Autor: Bartmann MG; Institute for Solid State Electronics, Technische Universität Wien, Gußhausstraße 25-25a, 1040 Vienna, Austria., Glassner S; Institute for Solid State Electronics, Technische Universität Wien, Gußhausstraße 25-25a, 1040 Vienna, Austria., Sistani M; Institute for Solid State Electronics, Technische Universität Wien, Gußhausstraße 25-25a, 1040 Vienna, Austria., Rurali R; Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain., Palummo M; Dipartimento di Fisica and INFN, Università di Roma 'Tor Vergata', 00133 Roma, Italy., Cartoixà X; Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain., Smoliner J; Institute for Solid State Electronics, Technische Universität Wien, Gußhausstraße 25-25a, 1040 Vienna, Austria., Lugstein A; Institute for Solid State Electronics, Technische Universität Wien, Gußhausstraße 25-25a, 1040 Vienna, Austria.
Jazyk: angličtina
Zdroj: ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2024 Jul 03; Vol. 16 (26), pp. 33789-33795. Date of Electronic Publication: 2024 Jun 20.
DOI: 10.1021/acsami.4c05477
Abstrakt: In this work, we explore the effect of ultrahigh tensile strain on electrical transport properties of silicon. By integrating vapor-liquid-solid-grown nanowires into a micromechanical straining device, we demonstrate uniaxial tensile strain levels up to 9.5%. Thereby the triply degenerated phonon dispersion relation at the Γ-point of silicon disentangle and the longitudinal phonon modes are used to precisely determine the extent of mechanical strain. Simultaneous electrical transport measurements showed a significant enhancement in the electrical conductance. Aside from considerable reduction of the Si bulk resistivity due to strain-induced band gap narrowing, comparison with quasi-particle GW calculations further reveals that the effective Schottky barrier height at the electrical contacts undergoes a substantial reduction. For these reasons, nanowire devices with ultrastrained channels may be promising candidates for future applications of high-performance silicon-based devices.
Databáze: MEDLINE