Bulk-suppressed and surface-sensitive Raman scattering by transferable plasmonic membranes with irregular slot-shaped nanopores.

Autor: Wyss RM; Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin, 12489, Berlin, Germany.; Soft Materials, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland., Kewes G; Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin, 12489, Berlin, Germany., Marabotti P; Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin, 12489, Berlin, Germany., Koepfli SM; Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland., Schlichting KP; Laboratory of Thermodynamics in Emerging Technologies Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland., Parzefall M; Photonics Lab, ETH Zürich, 8093 Zürich, Switzerland., Bonvin E; Photonics Lab, ETH Zürich, 8093 Zürich, Switzerland., Sarott MF; Department of Materials, ETH Zürich, 8093 Zürich, Switzerland., Trassin M; Department of Materials, ETH Zürich, 8093 Zürich, Switzerland., Oezkent M; Leibniz-Institut für Kristallzüchtung, 12489, Berlin, Germany., Lu CH; Leibniz-Institut für Kristallzüchtung, 12489, Berlin, Germany., Gradwohl KP; Leibniz-Institut für Kristallzüchtung, 12489, Berlin, Germany., Perrault T; Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS, Le Mans Université, 72085, Le Mans, France., Habibova L; Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin, 12489, Berlin, Germany., Marcelli G; Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin, 12489, Berlin, Germany., Giraldo M; Department of Materials, ETH Zürich, 8093 Zürich, Switzerland., Vermant J; Soft Materials, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland., Novotny L; Photonics Lab, ETH Zürich, 8093 Zürich, Switzerland., Frimmer M; Photonics Lab, ETH Zürich, 8093 Zürich, Switzerland., Weber MC; Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS, Le Mans Université, 72085, Le Mans, France., Heeg S; Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin, 12489, Berlin, Germany. sebastian.heeg@physik.hu-berlin.de.
Jazyk: angličtina
Zdroj: Nature communications [Nat Commun] 2024 Jun 19; Vol. 15 (1), pp. 5236. Date of Electronic Publication: 2024 Jun 19.
DOI: 10.1038/s41467-024-49130-2
Abstrakt: Raman spectroscopy enables the non-destructive characterization of chemical composition, crystallinity, defects, or strain in countless materials. However, the Raman response of surfaces or thin films is often weak and obscured by dominant bulk signals. Here we overcome this limitation by placing a transferable porous gold membrane, (PAuM) on the surface of interest. Slot-shaped nanopores in the membrane act as plasmonic antennas and enhance the Raman response of the surface or thin film underneath. Simultaneously, the PAuM suppresses the penetration of the excitation laser into the bulk, efficiently blocking its Raman signal. Using graphene as a model surface, we show that this method increases the surface-to-bulk Raman signal ratio by three orders of magnitude. We find that 90% of the Raman enhancement occurs within the top 2.5 nm of the material, demonstrating truly surface-sensitive Raman scattering. To validate our approach, we quantify the strain in a 12.5 nm thin Silicon film and analyze the surface of a LaNiO 3 thin film. We observe a Raman mode splitting for the LaNiO 3 surface-layer, which is spectroscopic evidence that the surface structure differs from the bulk. These results validate that PAuM gives direct access to Raman signatures of thin films and surfaces.
(© 2024. The Author(s).)
Databáze: MEDLINE