Autor: |
Ravichandran V; Sustainable Nanomaterials and Technologies Lab, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203, India., Chandrashekar A; Department of Chemistry, Faculty of Mathematical and Physical Sciences, M S Ramaiah University of Applied Sciences, Peenya Industrial Area, Bangalore, Karnataka 560058, India., Prabhu TN; Department of Chemistry, Faculty of Mathematical and Physical Sciences, M S Ramaiah University of Applied Sciences, Peenya Industrial Area, Bangalore, Karnataka 560058, India., Varrla E; Sustainable Nanomaterials and Technologies Lab, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203, India. |
Abstrakt: |
The rising concern over the usage of electronic devices and the operating environment requires efficient thermal interface materials (TIMs) to take away the excess heat generated from hotspots. TIMs are crucial in dissipating undesired heat by transferring energy from the source to the heat sink. Silicone oil (SO)-based composites are the most used TIMs due to their strong bonding and oxidation resistance. However, thermal grease performance is unreliable due to aging effects, toxic chemicals, and a higher percentage of fillers. In this work, TIMs are prepared using exfoliated hexagonal boron nitride nanosheets (h-BNNS) as a nanofiller, and they were functionalized by ecofriendly natural biopolymer soy protein isolate (SPI). The exfoliated h-BNNS has an average lateral size of ∼266 nm. The functionalized h-BNNS/SPI are used as fillers in the SO matrix, and composites are prepared using solution mixing. Hydrogen bonding is present between the organic chain/oxygen in silicone polymer, and the functionalized h-BNNS are evident from the FTIR measurements. The thermal conductivity of h-BNNS/SPI/SO was measured using the modified transient plane source (MTPS) method. At room temperature, the maximum thermal conductivity is 1.162 Wm -1 K -1 (833% enhancement) at 50 wt % of 3:1 ratio of h-BNNS:SPI, and the thermal resistance (TR) of the composite is 5.249 × 10 6 K/W which is calculated using the Foygel nonlinear model. The heat management application was demonstrated by applying TIM on a 10 W LED bulb. It was found that during heating, the 50 wt % TIM decreases the surface temperature of LED by ∼6 °C compared with the pure SO-based TIM after 10 min of ON condition. During cooling, the modified TIM reduces the surface temperature by ∼8 °C under OFF conditions within 1 min. The results indicate that natural polymers can effectively stabilize and link layered materials, enhancing the efficiency of TIMs for cooling electronics and LEDs. |