Embedded Machine Learning System for Muscle Patterns Detection in a Patient with Shoulder Disarticulation.

Autor: Guzmán-Quezada E; Departamento de Electromecánica, Universidad Autónoma de Guadalajara, Guadalajara 45129, Mexico., Mancilla-Jiménez C; Departamento de Ciencias Computacionales, Dirección de Posgrados, Campus Internacional, Universidad Autónoma de Guadalajara, Guadalajara 45129, Mexico., Rosas-Agraz F; Departamento de Electromecánica, Universidad Autónoma de Guadalajara, Guadalajara 45129, Mexico.; Departamento de Biongeniería Traslacional, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico., Romo-Vázquez R; Departamento de Biongeniería Traslacional, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico., Vélez-Pérez H; Departamento de Biongeniería Traslacional, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico.
Jazyk: angličtina
Zdroj: Sensors (Basel, Switzerland) [Sensors (Basel)] 2024 May 21; Vol. 24 (11). Date of Electronic Publication: 2024 May 21.
DOI: 10.3390/s24113264
Abstrakt: The integration of artificial intelligence (AI) models in the classification of electromyographic (EMG) signals represents a significant advancement in the design of control systems for prostheses. This study explores the development of a portable system that classifies the electrical activity of three shoulder muscles in real time for actuator control, marking a milestone in the autonomy of prosthetic devices. Utilizing low-power microcontrollers, the system ensures continuous EMG signal recording, enhancing user mobility. Focusing on a case study-a 42-year-old man with left shoulder disarticulation-EMG activity was recorded over two days using a specifically designed electronic board. Data processing was performed using the Edge Impulse platform, renowned for its effectiveness in implementing AI on edge devices. The first day was dedicated to a training session with 150 repetitions spread across 30 trials and three different movements. Based on these data, the second day tested the AI model's ability to classify EMG signals in new movement executions in real time. The results demonstrate the potential of portable AI-based systems for prosthetic control, offering accurate and swift EMG signal classification that enhances prosthetic user functionality and experience. This study not only underscores the feasibility of real-time EMG signal classification but also paves the way for future research on practical applications and improvements in the quality of life for prosthetic users.
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje