Encoding signal propagation on topology-programmed DNA origami.
Autor: | Ji W; Shanghai Key Laboratory of Green Chemistry and Chemical Processes; Shanghai Center of Brain-inspired Intelligent Materials and Devices; Shanghai Frontiers Science Center of Molecule Intelligent Syntheses; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China., Xiong X; Shanghai Key Laboratory of Green Chemistry and Chemical Processes; Shanghai Center of Brain-inspired Intelligent Materials and Devices; Shanghai Frontiers Science Center of Molecule Intelligent Syntheses; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China., Cao M; Shanghai Key Laboratory of Green Chemistry and Chemical Processes; Shanghai Center of Brain-inspired Intelligent Materials and Devices; Shanghai Frontiers Science Center of Molecule Intelligent Syntheses; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China., Zhu Y; Shanghai Key Laboratory of Green Chemistry and Chemical Processes; Shanghai Center of Brain-inspired Intelligent Materials and Devices; Shanghai Frontiers Science Center of Molecule Intelligent Syntheses; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China., Li L; Shanghai Key Laboratory of Green Chemistry and Chemical Processes; Shanghai Center of Brain-inspired Intelligent Materials and Devices; Shanghai Frontiers Science Center of Molecule Intelligent Syntheses; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China., Wang F; School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China., Fan C; School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China. fanchunhai@sjtu.edu.cn.; Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. fanchunhai@sjtu.edu.cn., Pei H; Shanghai Key Laboratory of Green Chemistry and Chemical Processes; Shanghai Center of Brain-inspired Intelligent Materials and Devices; Shanghai Frontiers Science Center of Molecule Intelligent Syntheses; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China. peihao@chem.ecnu.edu.cn. |
---|---|
Jazyk: | angličtina |
Zdroj: | Nature chemistry [Nat Chem] 2024 Sep; Vol. 16 (9), pp. 1408-1417. Date of Electronic Publication: 2024 Jun 17. |
DOI: | 10.1038/s41557-024-01565-2 |
Abstrakt: | Biological systems often rely on topological transformation to reconfigure connectivity between nodes to guide the flux of molecular information. Here we develop a topology-programmed DNA origami system that encodes signal propagation at the nanoscale, analogous to topologically efficient information processing in cellular systems. We present a systematic molecular implementation of topological operations involving 'glue-cut' processes that can prompt global conformational change of DNA origami structures, with demonstrated major topological properties including genus, number of boundary components and orientability. By spatially arranging reactive DNA hairpins, we demonstrate signal propagation across transmission paths of varying lengths and orientations, and curvatures on the curved surfaces of three-dimensional origamis. These DNA origamis can also form dynamic scaffolds for regulating the spatial and temporal signal propagations whereby topological transformations spontaneously alter the location of nodes and boundary of signal propagation network. We anticipate that our strategy for topological operations will provide a general route to manufacture dynamic DNA origami nanostructures capable of performing global structural transformations under programmable control. (© 2024. The Author(s), under exclusive licence to Springer Nature Limited.) |
Databáze: | MEDLINE |
Externí odkaz: |