High output flexible polyvinylidene fluoride based piezoelectric device incorporating cellulose nanofibers/BaTiO 3 @TiO 2 piezoelectric core-shell structure.

Autor: Zhang J; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi University, Nanning 530004, China., Song X; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi University, Nanning 530004, China., Cao S; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi University, Nanning 530004, China., Zhu Q; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi University, Nanning 530004, China., Chen X; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi University, Nanning 530004, China., Li D; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi University, Nanning 530004, China., Yuan Q; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi University, Nanning 530004, China. Electronic address: yuanquanping@gxu.edu.cn.
Jazyk: angličtina
Zdroj: International journal of biological macromolecules [Int J Biol Macromol] 2024 Aug; Vol. 275 (Pt 2), pp. 133088. Date of Electronic Publication: 2024 Jun 14.
DOI: 10.1016/j.ijbiomac.2024.133088
Abstrakt: Flexible composite film has gained increasing attention in the fields of wearable devices and portable electronic products. In this work, a novel core-shell structure of cellulose nanofibers/BaTiO 3 @TiO 2 (CNF/BTO@TiO 2 ) was synthesized with the assistant of the biological macromolecule material of cellulose nanofiber (CNF), in which the CNF can improve the stability and dispersibility of BaTiO 3 (BTO) in the aqueous phase and elevate the integrity of the core-shell structure. The core-shell structure can reduce the agglomeration of fillers in polyvinylidene fluoride (PVDF) and improve the structural defects of the composite film. Meanwhile, the core-shell structure can promote the polarization of the electric dipole and the formation of β phase in PVDF due to the generated interface spatial polarization between the shell of TiO 2 and the core of BTO. When the content of the core-shell structure was 5 wt%, the β phase content reaches 61.89 %, and the piezoelectric coefficient of composite film reaches 84.29 pm/V. Thus the maximum output open-circuit voltage (V OC ) and short-circuit current (I SC ) of the piezoelectric composite film is as high as 13.10 V and 464.3 nA. In addition, its excellent pressure sensing capability allows for its application in various flexible electronic devices.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE