A refined picture of the native amine dehydrogenase family revealed by extensive biodiversity screening.

Autor: Elisée E; Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France., Ducrot L; Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France., Méheust R; Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France., Bastard K; School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia., Fossey-Jouenne A; Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France., Grogan G; York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK., Pelletier E; Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France., Petit JL; Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France., Stam M; Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France., de Berardinis V; Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France., Zaparucha A; Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France., Vallenet D; Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France. vallenet@genoscope.cns.fr., Vergne-Vaxelaire C; Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France. carine.vergne@genoscope.cns.fr.
Jazyk: angličtina
Zdroj: Nature communications [Nat Commun] 2024 Jun 10; Vol. 15 (1), pp. 4933. Date of Electronic Publication: 2024 Jun 10.
DOI: 10.1038/s41467-024-49009-2
Abstrakt: Native amine dehydrogenases offer sustainable access to chiral amines, so the search for scaffolds capable of converting more diverse carbonyl compounds is required to reach the full potential of this alternative to conventional synthetic reductive aminations. Here we report a multidisciplinary strategy combining bioinformatics, chemoinformatics and biocatalysis to extensively screen billions of sequences in silico and to efficiently find native amine dehydrogenases features using computational approaches. In this way, we achieve a comprehensive overview of the initial native amine dehydrogenase family, extending it from 2,011 to 17,959 sequences, and identify native amine dehydrogenases with non-reported substrate spectra, including hindered carbonyls and ethyl ketones, and accepting methylamine and cyclopropylamine as amine donor. We also present preliminary model-based structural information to inform the design of potential (R)-selective amine dehydrogenases, as native amine dehydrogenases are mostly (S)-selective. This integrated strategy paves the way for expanding the resource of other enzyme families and in highlighting enzymes with original features.
(© 2024. The Author(s).)
Databáze: MEDLINE