A circumpolar study unveils a positive non-linear effect of temperature on arctic arthropod availability that may reduce the risk of warming-induced trophic mismatch for breeding shorebirds.

Autor: Chagnon-Lafortune A; Chaire de Recherche du Canada en Biodiversité Nordique, Département de Biologie, and Centre d'études Nordiques, Université du Québec à Rimouski, Rimouski, Québec, Canada., Duchesne É; Chaire de Recherche du Canada en Biodiversité Nordique, Département de Biologie, and Centre d'études Nordiques, Université du Québec à Rimouski, Rimouski, Québec, Canada., Legagneux P; Département de Biologie, Chaire de Recherche Sentinelle Nord Sur l'impact des Migrations Animales Sur les Écosystèmes Nordiques et Centre d'études Nordiques, Université Laval, Québec City, Québec, Canada.; CNRS- Centre d'Études Biologiques de Chizé - UMR 7372, Beauvoir-sur-Niort, France., McKinnon L; Department of Multidisciplinary Studies and Graduate Program in Biology, York University, Glendon Campus, Toronto, Ontario, Canada., Reneerkens J; Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands., Casajus N; Chaire de Recherche du Canada en Biodiversité Nordique, Département de Biologie, and Centre d'études Nordiques, Université du Québec à Rimouski, Rimouski, Québec, Canada., Abraham KF; Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Trent University, Peterborough, Ontario, Canada., Bolduc É; Chaire de Recherche du Canada en Biodiversité Nordique, Département de Biologie, and Centre d'études Nordiques, Université du Québec à Rimouski, Rimouski, Québec, Canada., Brown GS; Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Trent University, Peterborough, Ontario, Canada., Brown SC; Manomet Inc., Manomet, Massachusetts, USA., Gates HR; Manomet, Shorebird Recovery Program, Plymouth, Massachusetts, USA.; Migratory Bird Management, U.S. Fish and Wildlife Service, Anchorage, Alaska, USA., Gilg O; Laboratoire Chrono-Environnement, UMR 6249 CNRS-UFC, Université de Franche-Comté, Besançon, France.; Groupe de Recherche en Écologie Arctique, Francheville, France., Giroux MA; K.-C.-Irving Research Chair in Environmental Sciences and Sustainable Development, Université de Moncton, Moncton, New Brunswick, Canada., Gurney K; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA., Kendall S; Arctic National Wildlife Refuge, U.S. Fish and Wildlife Service, Fairbanks, Alaska, USA., Kwon E; Department of Behavioural Ecology & Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany., Lanctot RB; Migratory Bird Management, U.S. Fish and Wildlife Service, Anchorage, Alaska, USA., Lank DB; Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada., Lecomte N; Canada Research Chair in Polar and Boreal Ecology, Centre d'études Nordiques, Université de Moncton, Moncton, New Brunswick, Canada., Leung M; Wild Tracks Ecological Consulting, Whitehorse, Yukon, Canada., Liebezeit JR; Bird Alliance of Oregon, Portland, Oregon, USA., Morrison RIG; National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada., Nol E; Department of Biology, Trent University, Peterborough, Ontario, Canada., Payer DC; U.S. Fish and Wildlife Service, Fairbanks, Alaska, USA., Reid D; Wildlife Conservation Society Canada, Whitehorse, Yukon, Canada., Ruthrauff D; Alaska Science Center, US Geological Survey, Anchorage, Alaska, USA., Saalfeld ST; Migratory Bird Management, U.S. Fish and Wildlife Service, Anchorage, Alaska, USA., Sandercock BK; Department of Terrestrial Ecology, Norwegian Institute for Nature Research, Trondheim, Norway., Smith PA; Wildlife Research Division, Environment and Climate Change Canada, Ottawa, Ontario, Canada., Schmidt NM; Department of Ecoscience and Arctic Research Centre, Aarhus University, Roskilde, Denmark., Tulp I; Wageningen Marine Research, Wageningen University & Research, IJmuiden, The Netherlands., Ward DH; Alaska Science Center, US Geological Survey, Anchorage, Alaska, USA., Høye TT; Department of Ecoscience and Arctic Research Centre, Aarhus University, Aarhus, Denmark., Berteaux D; Chaire de Recherche du Canada en Biodiversité Nordique, Département de Biologie, and Centre d'études Nordiques, Université du Québec à Rimouski, Rimouski, Québec, Canada., Bêty J; Chaire de Recherche du Canada en Biodiversité Nordique, Département de Biologie, and Centre d'études Nordiques, Université du Québec à Rimouski, Rimouski, Québec, Canada.
Jazyk: angličtina
Zdroj: Global change biology [Glob Chang Biol] 2024 Jun; Vol. 30 (6), pp. e17356.
DOI: 10.1111/gcb.17356
Abstrakt: Seasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey. Using data from 19 sites spanning a wide temperature gradient from the Subarctic to the High Arctic, we investigated the effects of temperature on the phenology and biomass of arthropods available to shorebirds during their short breeding season at high latitudes. We hypothesized that prolonged exposure to warmer summer temperatures would generate earlier peaks in arthropod biomass, as well as higher peak and seasonal biomass. Across the temperature gradient encompassed by our study sites (>10°C in average summer temperatures), we found a 3-day shift in average peak date for every increment of 80 cumulative thawing degree-days. Interestingly, we found a linear relationship between temperature and arthropod biomass only below temperature thresholds. Higher temperatures were associated with higher peak and seasonal biomass below 106 and 177 cumulative thawing degree-days, respectively, between June 5 and July 15. Beyond these thresholds, no relationship was observed between temperature and arthropod biomass. Our results suggest that prolonged exposure to elevated temperatures can positively influence prey availability for some arctic birds. This positive effect could, in part, stem from changes in arthropod assemblages and may reduce the risk of trophic mismatch.
(© 2024 His Majesty the King in Right of Canada and The Authors. Global Change Biology published by John Wiley & Sons Ltd. Reproduced with the permission of the Minister of Environment and Climate Change Canada. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.)
Databáze: MEDLINE