Comparative effects of heat stress on photosynthesis and oxidative stress in Halophila ovalis and Thalassia hemprichii under different light conditions.

Autor: Saewong C; Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Coastal Oceanography and Climate Change Research Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand., Ow YX; St John's Island National Marine Laboratory, Tropical Marine Science Institute, National University of Singapore, 14 Kent Ridge Road, 119227, Singapore., Nualla-Ong A; Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand., Buapet P; Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Coastal Oceanography and Climate Change Research Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand. Electronic address: pimchanok.b@psu.ac.th.
Jazyk: angličtina
Zdroj: Marine environmental research [Mar Environ Res] 2024 Jul; Vol. 199, pp. 106589. Date of Electronic Publication: 2024 Jun 03.
DOI: 10.1016/j.marenvres.2024.106589
Abstrakt: This study investigated the physiological responses of two tropical seagrass species, Halophila ovalis and Thalassia hemprichii, to heat stress under varying light conditions in a controlled 5-day experiment. The experimental design included four treatments: control, saturating light, heat stress under sub-saturating light, and heat stress under saturating light (combined stress). We assessed various parameters, including chlorophyll fluorescence, levels of reactive oxygen species (ROS), antioxidant enzyme activities, and growth rates. In H. ovalis, heat stress resulted in a significant reduction in the maximum quantum yield of photosystem II (F v /F m ) regardless of the light condition. However, the effects of heat stress on the effective quantum yield of photosystem II (ɸPSII) were more pronounced under saturating light conditions. In T. hemprichii, saturating irradiance exacerbated the heat stress effects on F v /F m and ɸPSII, although the overall photoinhibition was less severe than in H. ovalis. Heat stress led to ROS accumulation in H. ovalis and reduced the activity of superoxide dismutase (SOD) and ascorbate peroxidase in the sub-saturating light condition. Conversely, T. hemprichii exhibited elevated SOD activity under saturating light. Heat stress suppressed the growth of both seagrass species, regardless of the light environment. The Biomarker Response Index indicated that H. ovalis displayed severe effects in the heat stress treatment under both light conditions, while T. hemprichii exhibited moderate effects in sub-saturating light and major effects in saturating light conditions. However, the Effect Addition Index revealed an antagonistic interaction between heat stress and high light in both seagrass species. This study underscores the intricate responses of seagrasses, emphasizing the importance of considering both local and global stressors when assessing their vulnerability.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 Elsevier Ltd. All rights reserved.)
Databáze: MEDLINE