Transfer of radionuclides through ecological systems: Lessons learned from 10 years of research within CERAD CoE.
Autor: | Brown J; DSA - Norwegian Radiation and Nuclear Safety Authority, Grini Næringspark 13, 1361 Østerås, Norway; Center for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway. Electronic address: justin.brown@dsa.no., Teien HC; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway; Center for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway., Thørring H; DSA - Norwegian Radiation and Nuclear Safety Authority, Grini Næringspark 13, 1361 Østerås, Norway; Center for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway., Skipperud L; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway; Center for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway., Hosseini A; DSA - Norwegian Radiation and Nuclear Safety Authority, Grini Næringspark 13, 1361 Østerås, Norway; Center for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway., Lind OC; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway; Center for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway., Oughton D; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway; Center for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway., Salbu B; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway; Center for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway. |
---|---|
Jazyk: | angličtina |
Zdroj: | The Science of the total environment [Sci Total Environ] 2024 Aug 25; Vol. 940, pp. 173503. Date of Electronic Publication: 2024 May 29. |
DOI: | 10.1016/j.scitotenv.2024.173503 |
Abstrakt: | Norway's Centre of Excellence for Environmental Radioactivity (CERAD) research programme included studies on transfer of radionuclides in various ecosystems within the context of environmental risk assessment. This article provides highlights from 10 years of research within this topic and summarises lessons learnt from the process. The scope has been extensive, involving laboratory-based experiments, field studies and the implementation of transfer models quantifying radionuclide uptake directly from the surrounding environment and via food chains. Field studies have had a global span and have, inter alia, covered sites contaminated with radionuclides associated with particles, ranging from nanoparticles to fragments, due to nuclear accidents (e.g., Chornobyl and Fukushima accidents) along with sites having enhanced levels of naturally occurring radioactive materials (e.g., Fen Complex in Norway and Taboshar in Tajikistan). Focus has been put on speciation and kinetics in determining radionuclide behavior and fate as well as on the influence of environmental factors that are potentially critical for the transfer of radionuclides. In particular, seasonal factors have been shown to greatly affect the dynamics of 137 Cs and 90 Sr bioaccumulation and loss in freshwater fish. The work has led to the collation of organism-specific (i) parameters important for kinetic models, i.e., uptake and depuration rates, and (ii) steady-state concentration ratios, CRs, where the use of stable analogue CRs as proxies for radionuclides has been brought into question. Dynamic models have been developed and applied for radiocaesium transfer to reindeer, radionuclide transfer in Arctic marine systems, transfer to fish via water and feed and commonly used agricultural food-chain transfer models applied in the context of nuclear emergency preparedness. The CERAD programme should contribute substantially to the scientific community's understanding of radionuclide transfer in environmental systems. Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2024 Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |