Identification of hypermucoviscous Klebsiella pneumoniae K1, K2, K54 and K57 capsular serotypes by Raman spectroscopy.

Autor: Fernández-Manteca MG; Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Photonics Engineering Group, Universidad de Cantabria, Santander, Spain. Electronic address: mariela.fernandez@unican.es., Ocampo-Sosa AA; Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain., Vecilla DF; Clinical Microbiology and Parasitology Department, Basurto University Hospital, Bilbao, Vizcaya, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Vizcaya, Spain., Ruiz MS; Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Spain., Roiz MP; Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Spain., Madrazo F; Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain., Rodríguez-Grande J; Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Spain., Calvo-Montes J; Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain., Rodríguez-Cobo L; Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Photonics Engineering Group, Universidad de Cantabria, Santander, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain., López-Higuera JM; Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Photonics Engineering Group, Universidad de Cantabria, Santander, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain., Fariñas MC; Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Enfermedades Infecciosas, Hospital Universitario Marqués de Valdecilla, Santander, Spain; Departamento de Medicina y Psiquiatría, Universidad de Cantabria, Santander, Spain., Cobo A; Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Photonics Engineering Group, Universidad de Cantabria, Santander, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain. Electronic address: adolfo.cobo@unican.es.
Jazyk: angličtina
Zdroj: Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy [Spectrochim Acta A Mol Biomol Spectrosc] 2024 Oct 15; Vol. 319, pp. 124533. Date of Electronic Publication: 2024 May 27.
DOI: 10.1016/j.saa.2024.124533
Abstrakt: Antimicrobial resistance poses a significant challenge in modern medicine, affecting public health. Klebsiella pneumoniae infections compound this issue due to their broad range of infections and the emergence of multiple antibiotic resistance mechanisms. Efficient detection of its capsular serotypes is crucial for immediate patient treatment, epidemiological tracking and outbreak containment. Current methods have limitations that can delay interventions and increase the risk of morbidity and mortality. Raman spectroscopy is a promising alternative to identify capsular serotypes in hypermucoviscous K. pneumoniae isolates. It provides rapid and in situ measurements with minimal sample preparation. Moreover, its combination with machine learning tools demonstrates high accuracy and reproducibility. This study analyzed the viability of combining Raman spectroscopy with one-dimensional convolutional neural networks (1-D CNN) to classify four capsular serotypes of hypermucoviscous K. pneumoniae: K1, K2, K54 and K57. Our approach involved identifying the most relevant Raman features for classification to prevent overfitting in the training models. Simplifying the dataset to essential information maintains accuracy and reduces computational costs and training time. Capsular serotypes were classified with 96 % accuracy using less than 30 Raman features out of 2400 contained in each spectrum. To validate our methodology, we expanded the dataset to include both hypermucoviscous and non-mucoid isolates and distinguished between them. This resulted in an accuracy rate of 94 %. The results obtained have significant potential for practical healthcare applications, especially for enabling the prompt prescription of the appropriate antibiotic treatment against infections.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.)
Databáze: MEDLINE